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Abstract. In this short paper, we investigate the equatidn- o =Z* when p, q are
primes and y = 1, 2, 3. In a very simple manner, we show teth of the three
equations has no solutions. Wiegpis composite, or when bothandq are composites,
some solutions are also exhibited.
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1. Introduction
The field of Diophantine equations is ancient, yvastd no general method exists to
decide whether a given Diophantine equation hassahyions, or how many solutions.

The famous general equation

pPrq =7
has many forms. The literature contains a vergedatumber of articles on non-linear
such individual equations involving primes and pmwef all kinds. Among them are for
example [1, 3, 5, 7].

In 1637, Fermat (1601 — 1665) stated the Diophantine equatiodi +y' = Z,
with integral n> 2, has no solutions in positive intege¢sy, z  This is known as
Fermat's "Last Theorem". In 1995, 358 yearsr]ahe validity of the Theorem was
established and published by A. Wiles. Thus, feegnal n> 3, the equationp” +q" = 2"
has no solutions in positive integers g, z

One may now ask the question whether orthetequation p" + ¢ = Z' has
solutions for all valuesy where 1< y < n- 1. Whenn = 3, the author [3]
established that the equation’ + g° =22 (y = 2) has exactly four solutions in all of
which p=7. In one solutiong is prime, whereas in the other three solutiapnss
composite. Forn = 3, the author [1] also considered the equatdnt g' = 2 (y = 1)
with primes p and g, and showed that the equation has infinitely yreolutions.

In Section 2 of this short paper, we Btigate the equatiop” + ¢’ =Z' whenn=
4 ie., p'+q =7 forallvaluesy <4 whenpandq are primes.

2. Theequation p*+ ¢’ =Z" isinsolvablefor primes p,q and y=1,2,3
In the following Theorem 2.1 when=4, withy=1, 2,3, andp, q are primes, the
three equationg” + o =7* are considered. In a very simple and elementayy \ias
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shown that each of these equations has no solutions
Theorem 2.1. Suppose thatp, g are any two distinct primeg:or each valuey = 1,

2, 3, the respective equati@i + ¢’ = 7' has no solutions.
Proof: We have the set of three equations

@ p'+ g =2
(b)) p'+ g =72
© p+q=2
Each case will be considered separately.

The equationp® + @’ =7 yields
¢ =2-p'=Z-p)Z+p’) = @-p)z P +P), 1)
where ¢ is the product of three distinct factors.

Supposda), i.e., p*+qt= 7
Hence by (1)
q=(z-p)(z p)(Z +p). (2)
Since q is prime, and has the only two divisors 1 amgl it clearly follows that
equation (2) is therefore impossible.
Thus p*+q' = Z has no solutions for all primgsand g.

Supposdb), i.e., p*+g’°= 2. By (1) we have
o= (- p)(z+ P)(Z +P). (3)

The three divisors of ¢ are 1,q and ¢ It is easily seen that none of the three
factors in (3) can be equal to eitligor to ¢°. Therefore equation (3) is impossible.
Hence p* + =27 has no solutions for all primgsand q.

Suppos€c), i.e., p*+q’= 2. From (1) we obtain
q’= (z-p)(z+ P)Z + ), 4)

and the divisors ofg® are 1,9, ¢ and g’. Evidently, none of these divisors can be
applied in any way to equation (4). It followstlequation (4) is impossible. Therefore,
the equationp® +q* = 7 has no solutions for all primgsand g.

This concludes the proof of Theorem 2.1. m

Final Remark. Suppose that the conditions ot + ¢ =7 are relaxed. For instance,
p is prime, butq is composite. Then, whep=1 andz=p + 1, the equation has
infinitely many solutions. The first four such gtibns are as follows:

(p,gy=1z=p+1)=(2,65,1,3), (3,175,1,4), (5 6716} (7, 1695, 1, 8).

Furthermore, whenp, q are two composites, i.ep = C, q = C,, with y=1and z
= C;+1, we have the solution

(C]_, Cg, y= 1, Z:C]_ + 1) = (4, 369, 1, 5)
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