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1. Introduction 
Let G = (V(G), E(G)) be a finite, undirected without loops and multiplied edges. The 
degree dG(v) is the number of vertices adjacent to v. Let ∆(G) denote the maximum 
degree among the vertices of G. The reverse vertex degree of a vertex v in G is defined as 
cv = ∆(G) – dG(v)+1. The reverse edge connecting the reverse vertices u and v will be 
denoted by uv. We refer [1] for undefined term and notation. 

A molecular graph is a graph whose vertices correspond to the atoms and the 
edges to the bonds. Chemical graph theory has an important effect on the development of 
the Chemical Sciences. A single number that can be used to characterize some property 
of the graph of molecular is called a topological index. Numerous topological indices 
have been considered in Theoretical Chemistry see [2]. 

The first reverse Zagreb beta index and second reverse Zagreb index [3] of a 
graph G are respectively defined as 
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These indices were also studied, for example, in [4, 5]. 
We now introduce the first and second reverse hyper-Zagreb indices of a graph G 

as  
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Considering the first and second reverse Zagreb indices, we introduce the first 
and second reverse Zagreb polynomials as 
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Also considering the first and second reverse hyper-Zagreb indices, we introduce 
the first and second reverse hyper-Zagreb polynomials as 
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Recently many topological indices were studied, for example, in [6, 7, 8, 9, 10, 
11, 12, 13, 14,15,16]. 

In this paper, we determine the first two reverse Zagreb indices, the first two 
reverse hyper-Zagreb indices, and their polynomials of rhombus silicate networks. For 
networks see [17] and references cited therein. 

 
2. Results for Rhombus Silicate networks 
Silicates are obtained by fusing metal oxides or metal carbonates with sand. In this 
section, we consider a family of rhombus silicate networks. This network is symbolized 
by RHSLn. A 3-dimensional rhombus silicate network is depicted in Figure 1. 

 
Figure 1: A 3-dimensional rhombus silicate network 

 
Theorem 1. The first and second reverse Zagreb indices of rhombus silicate network 
RHSLn are 
(i) CM1(RHSLn) = 42n2+36n.  (ii) CM2(RHSLn) = 30n2+72n+18. 
Proof: Let G be the graph of rhombus silicate network RHSLn. The graph G has 5n2 + 2n 
vertices and 12n2 edges. From Figure 1, we see that the vertices of RHSLn are either of 
degree 3 or 6. Thus ∆(G) = 6. In RHSLn, by algebraic method, there are three types of 
edges as follows: 

E33= {uv∈E(G) | dG(u) = dG(v) = 3},  |E33| = 4n+2. 
E36 = {uv∈E(G)| dG(u) | = 3,  dG(v) = 6}, |E36| = 6n2 + 4n – 4. 
E66 = {uv∈E(G)| dG(u) | = dG(v) = 6},  |E66| = 6n2 – 8n + 2. 
Clearly we have cu = ∆(G) – dG(u) + 1 = 7 – dG(u). 
We now see that there are three types of reverse edges as follows: 
CE44 = {uv∈E(G) | cu = cv = 4},   |CE44| = 4n + 2. 
CE41 = {uv∈E(G) | cu = 4, cv = 1},  |CE41| = 6n2 + 4n – 4. 
CE11 = {uv∈E(G) | cu = cv = 1},   |CE11| = 6n2 – 8n + 2. 



Reverse Zagreb and Reverse Hyper-Zagreb Indices and their Polynomials of Rhombus 
Silicate Networks 

49 

 

(i) To compute CM1(RHSLn), we see that 
 ( )
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 = (4+4) (4n + 2) + (4+1)(6n2 + 4n – 4) + (1+1)(6n2 – 8n + 2)  
 =  42n2+36n. 
(ii) To compute CM2(RHSLn), we see that 
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 = (4×4) (4n + 2) + (4×1)(6n2 + 4n – 4) + (1×1)(6n2 – 8n + 2)  
 =  30n2 + 72n + 18. 
 
Theorem 2. The first and second reverse Zagreb polynomials of rhombus silicate 
network RHSLn are 
(i) CM1(RHSLn, x) = (4n+2) x8 + (6n2 + 4n – 4) x5 + (6n2 – 8n + 2) x2.  
(ii) CM2(RHSLn, x) = (4n+2) x16 + (6n2 + 4n – 4) x4 + (6n2 – 8n + 2) x. 
Proof: Let G= RHSLn  
(i) From equation (3) and by cardinalities of the reverse edge partition of RHSLn, we have 
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(ii) From equation (3), and by cardinalities of the reverse edge partition of RHSLn, we 
have 
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Theorem 3. The first and second reverse hyper-Zagreb indices of rhombus silicate 
network RHSLn are 

(i) HCM1(RHSLn) = 174n2 + 324n + 36.  
(ii) HCM2(RHSLn) = 102n2 + 1080n + 450. 

Proof: Let G = RHSLn.  
(i) From equation (2) and by cardinalities of the reverse edge partition of RHSLn, we have 
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(ii) From equation (2) and by cardinalities of the reverse edge partition of RHSLn, we 
have 
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Theorem 4. The first and second reverse hyper-Zagreb polynomials of rhombus silicate 
network RHSLn are 

(i) HCM1(RHSLn, x) = (4n+2)x64 + (6n2 + 4n –2)x25 + (6n2 – 8n + 2)x4.  
(ii) HCM2(RHSLn, x) = (4n+2)x256 + (6n2 + 4n –2)x16 + (6n2 – 8n + 2)x. 

Proof: Let G = RHSLn.  
(i) From equation (4) and by cardinalities of the reverse edge partition of RHSLn, we have 
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(ii) From equation (4) and by cardinalities of the reverse edge partition of RHSLn, we 
have 
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