Annals of Pure and Applied Mathematics Vol. 15, No. 1, 2017, 1-11 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v15n1a1

Annals of **Pure and Applied Mathematics**

Bounds of Location-2-Domination Number for Products of Graphs

G.Rajasekar¹ and A.Venkatesan²

¹Department of Mathematics, Jawahar Science College, Neyveli. Tamilnadu, India. Email: <u>grsmaths@gmail.com</u> ²Department of Mathematics, St. Joseph's College of Arts and Science College (Autonomous) Cuddalore. Tamilnadu, India. Email: <u>suresh11venkat@gmail.com</u>

Received 1 November 2017; accepted 4 December 2017

Abstract. In this paper Location-2-Domination set and their properties are being studied. A subset $S \subseteq V$ is Location-2-Dominating set of G if S is 2-Dominating set of G and for any two vertices $u, v \in V - S$ such that $N(u) \cap S \neq N(v) \cap S$, its denoted by $R_2^D(G)$. Based on this definition the bounds of the Location-2-domination number for direct product, Cartesian product and semi-strong product of graphs namely $P_n \Box C_m$, $C_n \Box S_m$, $P_n \times W_m$, $C_n \times S_m P_n \bowtie P_m$, $C_n \bowtie C_m$ have been found.

Keywords: 2-Domination, Location Domination, Product of Graphs

AMS Mathematics Subject Classification (2010): 05C69

1. Introduction

Throughout this paper let us follow the terminology and notation of Harary [11]. Cockayne and Hedetniemi [7] introduce the concept dominating set. A subset S of vertices from V is called a dominating set for G if every vertex of G is either a member of S or adjacent to a member of S. A dominating set of G is called a minimum dominating set if G has no dominating set of smaller cardinality. The cardinality of minimum dominating set of G is called the dominating number for G and it is denoted by $\gamma(G)$ [6].

Harary and Haynes [5] introduced the concepts of double domination in graphs. A dominating set S of G is called double dominating set if every vertex in V-S is adjacent to at least two vertices in S. Given a dominating set S for graph G, for each u in V-S let S(u) denote the set of vertices in S which are adjacent to u. The set S is called locating dominating set, if for any two vertices u and w in V-S one has S(u) not equal to S(w) and the minimum cardinality of Location Domination set is denoted by RD(G) [7]. The Cartesian product $G \square H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and edge set is $(u, a)(v, b) \in E(G \square H)$ if and only if a = b and

 $uv \in E(G)$ or u = v and $ab \in E(H)$ [3]. The direct product $G \times H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and edge set is $(u, a)(v, b) \in E(G \times H)$ if and only if $uv \in E(G)$ and $ab \in E(H)$ [14]. The Semi-Strong Product of two graphs G and H is the graph $G \bowtie H$ with vertices $V(G \bowtie H) = V(G) \times V(H)$ and edges $E(G \bowtie H) = \{(a,x)(b,y)\}$ if and only if $(a,b) \in E(G)$ and x=y or $(a,b) \in E(G)$ and $(x,y) \in E(H)\}$ [12].

2. Preliminaries

2.1 Location-2-domination

Definition 2.1.1. [8] A subset $S \subseteq V$ is Location – 2 -Dominating set of G if S is 2 Dominating set of G and if for any two vertices $u, v \in V - S$ such that

$$N(u) \cap S \neq N(v) \cap S$$
.

The minimum cardinality of Location-2-Dominating is denoted by $R_2^D(G) = |S|$

2.2. Location-2-domination for simple graphs

Theorem 2.2.1. [9] In Location-2-Domination for any graph the vertex $\{v\}$ is an pendent vertex then $\{v\} \in \mathbb{R}_2^D(G)$ only.

Theorem 2.2.2. [8] Location-2-Domination number of a Path P_n is

$$R_2^D(P_n) = \begin{cases} \frac{n-1}{2} + 1, & n \text{ is odd} \\ \frac{n}{2} + 1 & n \text{ is even} \end{cases}$$

Theorem 2.2.3. [8] Location-2-Domination for any cycle C_n , for $n \neq 4$ is

$$R_2^D(G) = \begin{cases} \frac{n}{2} & n \text{ is even} \\ \frac{n-1}{2} + 1 & n \text{ is odd} \end{cases}$$

2.3 Location-2-domination for Cartesian product of graphs Theorem 2.3.1. [10] For any graph $G = (P_n \Box S_m)$,

$$R_2^D(G) = \begin{cases} R_2^D(\mathbf{P}_n) + \frac{\mathbf{m}(n-1)}{2} & n \text{ is odd} \\ \\ \frac{n}{2}(m+1) & n \text{ is even} \end{cases}$$

Theorem 2.3.2. [10] Location-2-Domination for any graph $G = (P_n \Box P_m)$ is

$$R_2^D(G) = \begin{cases} \frac{nm}{2} & n \text{ is even, } m \text{ is either even or odd} \\ \frac{nm-1}{2} & n \text{ is odd, } m \text{ is odd} \end{cases}, m \neq 2, n \neq 2$$

Theorem 2.3.3. [10] Location-2-domination for any graph $G = (C_n \square C_m)$ is

$$R_2^D(G) = \begin{cases} \frac{nm}{2} & n \text{ is even, } m \text{ is either even or odd} \\ \frac{nm-1}{2} & n \text{ is odd, } m \text{ is odd} \end{cases}$$

2.4. Location-2-domination for direct product of graphs Theorem 2.4.1. [10] For Graphs P_n $(n \neq 3)$ and S_m , $R_2^D(P_n \times S_m) = nm, n, m = 1, 2, 3, ...$

Theorem 2.4.2. [10] Location -2-Domination for P_n and P_m , $m \neq 3$,

$$R_{2}^{D}(P_{n} \times P_{m}) = \begin{cases} \frac{nm}{2} + 2 & n, m \text{ is even} \\ \frac{nm}{2} + 2 & \text{either n is odd, m is even} \\ (or)n \text{ is even m is odd} \\ \frac{n(m+1)}{2} & n, m \text{ is odd but } n < m \\ \frac{m(n+1)}{2} & n, m \text{ is odd but } n > m \end{cases}$$

Theorem 2.4.3. [10] For *n*,*m*≥5,

$$\begin{split} R_2^D(C_n \times C_m) &= \frac{nm}{2}, \ n, m \text{ is even}, \\ R_2^D(C_n \times C_m) &= \frac{(n-1)m}{2}; \ n \text{ is odd } m \text{ is even}, \\ R_2^D(C_n \times C_m) &= \frac{n(m-1)}{2}; \ n \text{ is even } m \text{ is odd}, \\ R_2^D(C_n \times C_m) &= \frac{n(m-1)}{2}; \ n, m \text{ is odd } but \ n > m \ , \\ R_2^D(C_n \times C_m) &= \frac{m(n-1)}{2}; \ n, m \text{ is odd } but \ n < m. \end{split}$$

3. Location -2-domination of products of graph 3.1. Location -2-domination (Cartesian product) of $C_n \Box P_m$, $C_n \Box S_m$

$$R_{2}^{D}(G) = \begin{cases} \frac{nm}{2} & n \text{ is even , m is either even (or) odd} \\ \frac{nm}{2} + 1 & n \text{ is odd m is even} \\ \frac{nm+1}{2} & n \text{ is odd , m is odd} \end{cases} \begin{array}{c} \text{Theorem} \\ \textbf{3.1.1. For any} \\ \text{graph } P_{m} \text{ and} \\ C_{n} \\ G = (C_{n} \Box P_{m}) \\ \text{we have} \end{cases}$$

Proof: Consider path of *m* vertices and Cycle of *n* vertices. The Vertex set of P_m and C_n are $\{1, 2, ..., m\}$ and $\{1, 2, ..., n\}$ respectively. Clearly |G| = nm in which 2n vertices are degree 3 and (m-2)n vertices are degree 4 and let *S* - Set denote Location-2-Domination of G.

Case(i): Suppose *n* is even and *m* is either even or odd, in this situation |V(G)| = nm even number of vertices. In *G* fix any vertex from C_1 and form open path through vertices of P_1 , continue the open path starts with C_2 through P_2 , continue the same process till C_n through P_m , each time the process of continuation of open path from C_1 to C_n done only by either towards right or left direction only not alternatively. Finally the collection of vertices from C_1 to C_n through P_1 to P_m forms a cycle of length even with nm vertices. So by the Theorem: 2.2.3, $|S| = \frac{nm}{2}$, i.e. $R_2^D(G) = \frac{nm}{2}$.

Case (ii): Suppose *n* is odd, but *m* is even, in this situation |V(G)| = nm is even, in *G* fix any vertex from C_1 and form an open path through P_1 , continue the open path starts with C_2 through P_2 , continue the same process till C_n through P_m , each time in the process of continuation open path from C_1 to C_n done only by either towards right or left direction only not for alternatively. Finally the collection of vertices from C_1 to C_n through P_1 to P_m forms a path of length even with *nm* vertices. So by the Theorem:

2.2.2
$$|S| = \frac{nm}{2} + 1$$
, i.e. $R_2^D(G) = \frac{nm}{2} + 1$

Case(iii): Suppose *n* is odd and *m* is odd .Clearly |G| = nm odd number of vertices, From *G*, let us consider $|S| = |S_1| + |S_2|$ where $|S_1|$ denote the Location-2-Domination for $\{C_1, C_3, ..., C_m\}$ and $|S_2|$ denote the Location-2-Domination for $\{C_2, C_4, ..., C_{m-1}\}$, but

$$\begin{split} |C_1| &= |C_2| = \dots = |C_{m-1}| = |C_m| = n. \text{ And for } S_1 = \{C_1, C_3, \dots, C_m\} \text{ the vertex set of } S_1 \text{ are } \\ \{C_{11}, C_{12}, \dots, C_{1n}, C_{31}, C_{32}, \dots, C_{3n}, \dots, C_{m1}, C_{m2}, \dots, C_{mn}\}, \text{ By the Theorem: 2.2.3 Location -2-Domination for Cycle of length odd is <math>\frac{n-1}{2} + 1 = \frac{n+1}{2}. \text{ Therefore } \\ |C_i| &= \frac{n+1}{2}, i = 1, 3, \dots, m. \text{ Clearly } S_1 \text{ -set contains } \frac{m+1}{2} \text{ times of cycle with odd length.} \\ \text{Therefore } |S_1| &= \left(\frac{m+1}{2}\right) \left(\frac{n+1}{2}\right) \text{ and } S_2 = \{C_2, C_4, \dots, C_{m-1}\} \text{ the vertex set of } S_2 \text{ are } \\ \{C_{21}, C_{22}, \dots, C_{2n}, C_{41}, C_{42}, \dots, C_{4n}, \dots, C_{(m-1)1}, C_{(m-1)2}, \dots, C_{(m-1)n}\}, \text{ now collect the vertex from } \\ C_2 \text{ as } N(V - S_1) - S_1 \text{ in } C_1. \text{ This gives } \frac{n-1}{2} \text{ vertices in } C_2. \text{ Continuing the same } \\ \text{process for } \{C_4, C_6, \dots, C_{m-1}\}, \text{ i.e. collect the vertex for } C_{i+1} \text{ as } N(V - S_i) - S_i \text{ from } C_i \text{ for } i = 1, 2, \dots, m-2. \end{split}$$

Clearly
$$S_2$$
 -set contains $\frac{m-1}{2}$ times of C_{i+1} , $i = 1, 2, ..., m-2$. i.e. $|S_2| = \left(\frac{m-1}{2}\right) \left(\frac{n-1}{2}\right)$
 $|S| = \left(\frac{m+1}{2}\right) \left(\frac{n+1}{2}\right) + \left(\frac{m-1}{2}\right) \left(\frac{n-1}{2}\right) = \frac{nm+1}{2}$. Therefore, $R_2^D(G) = |S| = \frac{nm+1}{2}$.

Theorem 3.1.2. For graphs P_n and S_m , $R_2^D(C_n \Box S_m) = \begin{cases} \frac{n(m+1)}{2} & n \text{ is even} \\ \frac{n+1}{2} + \frac{m(n-1)}{2} & n \text{ is odd} \end{cases}$

Proof: Consider the vertex set of *G* namely $\{v_{ij}\}$ for $1 \le i \le n$, $1 \le j \le m+1$. Clearly |G| = nm. Let *S*-set denote Location-2-Dominating set, by observing *G*, $d_G(v_{ij}) = m+1$ for i = 1, n. and $1 \le j \le m+1$ also $d_G(v_{ij}) = 4$ for $2 \le i \le n-1$, $2 \le j \le m+1$. i.e. v_{i1} , i = 1, 2, ..., n is adjacent with v_{ij} , $2 \le j \le m+1$.

Case (i): Suppose *n* is even and *m* is either even or odd. Clearly |G| = nm has even number of vertices, in this sense now collect *S*-set possibly by $\{v_{i1}\}$, i = 1, 3, 5, ..., n-1 and $\{v_{ij}\}$ for i = 2, 4, ..., n, $2 \le j \le m+1$, or $\{v_{i1}\}$, i = 2, 4, 6, ..., n and $\{v_{ij}\}$ for i = 1, 3, ..., n-1, $2 \le j \le m+1$, this gives $\frac{n}{2}$ times a single vertex and $\frac{n}{2}$ times *m* vertices or $\{v_{ij}\}$ for i = 1, 3, 5, ..., n-1, $1 \le j \le m+1$, this gives $\frac{n}{2}$ times m+1 vertices.

i.e.
$$|S| = \frac{n}{2} + \frac{nm}{2} = \frac{n(m+1)}{2}$$
 therefore $R_2^D(G) = \frac{n(m+1)}{2}$

Suppose, $\{v_{i1}\} \in S$, i = 1, 3, 5, ..., n-1 and $\{v_{ij}\} \notin S$ for $i = 2, 4, ..., n, 2 \le j \le m+1$ or some $\{v_{ij}\} \notin S$ for $i = 2, 4, ..., n, 2 \le j \le m+1$. Clearly this contradicts the definition of Location-2-Domination or minimum cardinality of S-set or $\{v_{i1}\} \notin S$, i = 1, 3, 5, ..., n-1 and $\{v_{ij}\} \in S$ for i = 2, 4, ..., n. $2 \le j \le m+1$, in this situation $\{v_{ij}\}$, i = 1, 3, 5, ..., n-1, $1 \le j \le m+1$ needs additional vertex, clearly it also contradicts the minimum cardinality of S-set.

Case (ii): Suppose *n* is odd, *m* is either even or odd. Clearly |V(G)| = nm gives even number of vertices, in this sense now collect *S* – set possibly by $\{v_{i1}\}$, i = 1, 3, 5, ..., n and $\{v_{ij}\}$ for i = 2, 4, ..., n-1. $2 \le j \le m+1$, this gives $\frac{n+1}{2}$ times a single vertex and $\frac{n-1}{2}$ times m+1 vertices.

That is,
$$|S| = \frac{n+1}{2} + \frac{(n-1)m}{2}$$
 and therefore $R_2^D(G) = \frac{n+1}{2} + \frac{m(n-1)}{2}$

Suppose, $\{v_{i1}\} \in S$, i = 2, 4, ..., n-1 and $\{v_{ij}\} \in S$ for $i = 1, 3, ..., n, 2 \le j \le m+1$ this gives $|S| = \frac{n-1}{2} + \frac{(n+1)m}{2}$ contradicts minimum cardinality of S-set or some $\{v_{ij}\} \notin S$ for $i = 2, 4, ..., n, 2 \le j \le m+1$, clearly it contradicts the definition of Location-2-Domination.

3.2. Location-2-domination (Direct product) of $P_n \times W_m$, $P_n \times C_m$

Theorem 3.2.1. For any Graphs P_n , $n \neq 2$ and W_m , $m \neq 5$ we have

$$R_2^D(G) = \begin{cases} \frac{nm}{2} & n \text{ is even} \\ \frac{m(n+1)}{2} & n \text{ is odd} \end{cases}$$

Proof: Label the vertices of $G \operatorname{as} \{v_{ij}\}, 1 \le i \le n, 1 \le j \le m$, clearly |G| = nm from G $d_G(v_{11}) = d_G(v_{n1}) = m-1$, $d_G(v_{1j}) = d_G(v_{nj}) = 3, 2 \le j \le m$ and $d_G(v_{ij}) = 6$, $2 \le i \le n-1$, $2 \le j \le m$. Now labels of G are partitioned into n different sets namely $U_i, 1 \le i \le n$ are $\{v_{ij}\}, 1 \le i \le n, 1 \le j \le m$ respectively. But there is no adjacency from v_{ij} to v_{ji} for $1 \le i \le n, 1 \le j \le m$. Clearly u_i is adjacent to u_{i-1} and u_{i+1} for i = 1, 2, ..., n.

Case (i): Suppose *n* is even, then the collection of the sets U_i , i = 1, 3, ..., n-1 or i = 2, 4, ..., n will have $\frac{n}{2}$ times *m* vertices i.e. $|S| = \frac{nm}{2}$ therefore $R_2^D(G) = \frac{nm}{2}$.

Case (ii): Suppose *n* is odd by based on Theorem 2.2.2, the collection of the sets U_i , i = 2, 4, ..., n-1 will have $\frac{n-1}{2}$ times *m* vertices i.e. $|S| = \frac{(n-1)m}{2}$ therefore $R_2^D(G) = \frac{(n-1)m}{2}$. Suppose if we collect the sets U_i , i = 1, 3, ..., n this contradicts the minimum cardinality.

Result 3.2.1. $R_2^D(P_2 \times W_m) = m$.

Result 3.2.2. $R_2^D(P_n \times W_5) = \begin{cases} 3n, & n \text{ is even} \\ 5\left(\frac{n+1}{2}\right) + \frac{n-1}{2}, & n \text{ is odd} \end{cases}$

Theorem 3.2.2. For Graphs C_n and S_m , $R_2^D(C_n \times S_m) = nm \ n, m = 1, 2, 3, ...$

Proof: The vertex set of *G* are $\{v_{ij}\}, 1 \le i \le n, 1 \le j \le m+1$. Let *S*-set denote Location-2-Dominating set of *G*. Clearly by observation of $G d_G(v_{i1}) = 2m, 1 \le i \le n$ and $d_G(v_{ij}) = 2, 1 \le i \le n, 2 \le j \le m+1$. Now collect the *S*-set possibly by either $v_{ij}, 1 \le i \le n, 2 \le j \le m+1$ or $v_{i1}, 1 \le i \le n$ and $v_{ij}, 1 \le i \le n, 3 \le j \le m+1$ i.e. leaving anyone of the same base vertex of i = 1, 2, ... or j = 1, 2, ... clearly this *n* times *m* vertices. i.e. |S| = nm. Suppose $v_{i1} \in S, i = 1, 2, 3, ..., n$ and $v_{ij} \notin S, 1 \le i \le n, 2 \le j \le m+1$ then this contradicts the definition of Location-2-Domination. Therefore $R_D^2(G) = |S| = nm$.

3.3 Location-2-domination (semi-strong product) of $P_n \bowtie P_m$, $C_n \bowtie P_m$, $C_n \bowtie C_m$ **Theorem 3.3.1.** For any graphs P_n , $n \neq 3$ and P_m , $m \neq 2$, $G=P_n \bowtie P_m$ is

$$R_2^D(G) = \begin{cases} \frac{nm}{2}, & n \text{ is even, } m \text{ is even or odd} \\ \frac{nm}{2}, & n \text{ is odd, } m \text{ is even} \\ \frac{n(m+1)}{2}, & n, m \text{ is odd } n < m \\ \frac{m(n+1)}{2}, & n, m \text{ is odd } m < n \\ \frac{n(m+1)}{2}, & n, m \text{ is odd } n = m \end{cases}$$

Proof: Label the vertices of *G* as $\{v_{ij}\}, 1 \le i \le n \text{ and } 1 \le j \le m$. Let *S* – set be the Location-2-Domination set of *G*, then clearly $d_G(v_{ij}) \ge 2, i = 1, 2, ..., n, j = 1, 2, ..., m$.

Case (i): Suppose *n* is even and *m* is even or odd, now let us collect the S-set possibly by $\{v_{ij}\}i=1,3,...,n-1, j=1,2,...,m$ or $\{v_{ij}\}i=2,4,...,n, j=1,2,3,...,m$ this gives $\frac{nm}{2}$ vertices i.e. $|S| = \frac{nm}{2} R_2^D(G) = \frac{nm}{2}$.

Case (ii): Suppose *n* is odd, *m* is even in this sense let us collect the *S*-set possibly by $\{v_{ij}\}i=1,2,3,...,n, j=1,3,...,m-1$ and v_{1m}, v_{nm} and this gives $\frac{nm}{2}+2$ vertices that $is|S|=\frac{nm}{2}+2$ therefore $R_2^D(G)=\frac{nm}{2}+2$. Suppose the vertices v_{1m}, v_{nm} does not belong to *S*-set or $\{v_{ij}\}i=1,3,...,n-1, j=1,2,3,...,m$ then this is a contradiction to minimum cardinality.

Case (iii): Suppose n,m is odd but n < m, in this case let us collect the *S*-set possibly by $\{v_{ij}\}i=1,2,3,...,n, j=1,3,...,m-1$ and this gives n times $\frac{m+1}{2}$ vertices that is $|S| = \frac{n(m+1)}{2}$ therefore $R_2^D(G) = \frac{n(m+1)}{2}$. Then the collection $\{v_{ij}\}i=1,3,...,n-1, j=1,2,3,...,m$ is not a minimum cardinality set.

Case (iv): Similar to the case (iii).

Case (v): suppose *n*, *m* is odd but n = m in this case let us collect the *S*-set possibly by $\{v_{ij}\}i=1,2,3,...,n, j=1,3,...,m$ or $\{v_{ij}\}i=1,3,...,n, j=1,2,3,...,m$ then this gives $\frac{n(m+1)}{2}$ vertices that is $|S| = \frac{n(m+1)}{2}$ and hence $R_2^D(G) = \frac{n(m+1)}{2}$.

Result 3.3.1. $R_2^D(P_n \times P_2) = n$

Result 3.3.2. $R_2^D(P_3 \times P_m) = 2m$

Observation 3.3.1. The semi-strong product of $C_n \times P_m$ is not equal to $P_n \times C_m$

Theorem 3.3.2. For any graphs C_n , n > 5 and P_m , $m \neq 2$, $G=C_n \bowtie P_m$

$$R_{2}^{D}(\mathbf{G}) = \begin{cases} 2\left(\frac{m}{2}+1\right) + \frac{m}{2} + m\left(\frac{n-4}{2}\right) & n, m \text{ is even} \\ (m+1) + m\left(\frac{n-3}{2}\right) & n, m \text{ is odd} \\ m\left(\frac{n-3}{2}\right) + 2(m+2) & n \text{ is odd } m \text{ is even} \\ 3\left(\frac{m+1}{2}\right) + m\left(\frac{n-4}{2}\right) & n \text{ is even } m \text{ is odd} \end{cases}$$

Proof: $|V(G)| = nm = \{v_{ij}\}, i = 1, 2, ..., n, j = 1, 2, ..., m$. Clearly $d_G(v_{ij}) \ge 2$ for i = 1, 2, ..., n, j = 1, 2, ..., m

Case (i): Suppose n,m is even, in this case cardinality of S – set contains the vertices are $v_{ij}, i = 1, n. j = 1, 3, ..., m - 1, m$ and $v_{(n-1)j}, j = 1, 3, ..., m - 1$ also v_{ij} for i = 3, 5, ..., n - 3. j = 1, 2, ..., m. Clearly this gives 2 times $\left(\frac{m}{2}+1\right)$ vertices and $\frac{m}{2}$ times a single vertex. Also $\frac{n-4}{2}$ times m vertices. That is $|S| = 2\left(\frac{m}{2}+1\right) + \frac{m}{2} + m\left(\frac{n-4}{2}\right)$ and therefore $R_2^D(G) = 2\left(\frac{m}{2}+1\right) + \frac{m}{2} + m\left(\frac{n-4}{2}\right)$.

Case (ii): Suppose n,m is odd, now the S-set contains the vertices $v_{ij}, i = 1, n. j = 1, 3, ..., m$ and also v_{ij} for i = 3, 5, ..., n-2, j = 1, 2, ..., m. Then this gives 2 times $\left(\frac{m+1}{2}\right)$ vertices and $\frac{n-3}{2}$ times m vertices. That is $|S| = (m+1) + m\left(\frac{n-3}{2}\right)$ and therefore $R_2^D(G) = (m+1) + m\left(\frac{n-3}{2}\right)$

Case (iii): Proof is similar to Case (i) and hence $R_2^D(G) = (m+2) + m\left(\frac{n-3}{2}\right)$

Case (iv): Suppose *n* is even, *m* is odd, now the *S*-set contains the vertices $v_{ij}, i = 1, n-1, n; j = 1, 3, ..., m$ and also v_{ij} for i = 3, 5, ..., n-3; j = 1, 2, ..., m. Then this gives $3 \text{ times } \left(\frac{m+1}{2}\right)$ vertices and $\frac{n-4}{2}$ times *m* vertices. That is $|S| = 3(m+1) + m\left(\frac{n-4}{2}\right)$ therefore $R_2^D(G) = 3(m+1) + m\left(\frac{n-4}{2}\right)$

Result 3.3.3. $R_2^D(C_2 \times C_m) = m, m \neq 2,3$

Result 3.3.4. $R_2^D(C_3 \times C_m) = 2(m-1)$

Result 3.3.5. $R_2^D(C_4 \times C_m) = 2m$

Theorem 3.3.3. For Graphs C_n , $n \neq 2, 3, 4$. and C_m , G=C_n \bowtie C_mis

$$R_2^D(\mathbf{G}) = \begin{cases} \frac{nm}{2} & n, m \text{ is even} \\ n\left(\frac{m-1}{2}\right) & n \text{ is even or odd, } m \text{ is odd} \\ m\left(\frac{n-1}{2}\right) & n \text{ is odd, } m \text{ is even} \end{cases}$$

Proof: Let the vertices of *G* be $\{v_{ij}\}, i = 1, 2, ..., n, j = 1, 2, ..., m$. Let *S* – denotes Location-2-Dominating set.

Case (i): Proof is followed by Theorem 3.5 Case (i)

Case (ii): Suppose *n* is odd, *m* is odd and let us collect the *S*-set possibly by *S* $\{v_{ij}\}i=1,3,...,n-2, j=1,2,3,...,m$. Clearly this gives $\frac{m-1}{2}$ times *n* vertices, that is $|S|=n\left(\frac{m-1}{2}\right)$ and therefore $R_2^D(G)=n\left(\frac{m-1}{2}\right)$.

Case (iii): suppose *n* is odd, *m* is even and let us collect the *S*-set possibly by $\{v_{ij}\}i=1,2,3,...,n, j=1,3,...,m-1$. Clearly this gives $\frac{n-1}{2}$ times *m* vertices that is $|S|=m\left(\frac{n-1}{2}\right)$ and hence $R_2^D(G)=m\left(\frac{n-1}{2}\right)$. Suppose if anyone the vertex collection as $\{v_{ij}\}i=1,3,...,n-2,n-1, j=1,2,3,...,m$ then this is once again contradiction to minimum cardinality.

Acknowledgement. The authors thank the anonymous referees for their helpful suggestions.

REFERENCES

1. M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Combine., 31 (1991) 223-227.

- 2. M. El-Zahar, S. Khamis and Kh. Nazzal, On the domination number of the Cartesian product of the cycle of length n and any graph, *Discrete App. Math.*, 155 (2007) 515-522.
- 3. R.J. Faudree and R.H. Schelp, The domination number for the product of graphs, *Congr. Numer.*, 79 (1990) 29-33.
- 4. S.Gravier and M.Mollard, On Domination numbers of Cartesian product of paths, *Discrete App. Math.*, 80 (1997) 247-250.
- 5. F.Harary and T.W.Haynes, Double domination in graphs, *Ars Combin.*, 55 (2000) 201-213.
- 6. F.Haray, Graph Theory, Addsion Wesley, Reading, MA (1969).
- 7. T.W.Haynes, S.T.Hedetniemi and P.J.Salter, *Fundamental of domination in Graphs*, Marcel Decker, Inc., New York (1997).
- 8. G.Rajasekar, and A.Venkatesan, Location-2-domination for simple graphs, *Global Journal of Pure and Applied Mathematics*, 13(9) (2017) 5049-5057.
- 9. G.Rajasekar and A.Venkatesan, Location-2-domination for special kinds of simple graphs, *International Journal of Pure and Applied Mathematics*, 117(5) (2017)13-20.
- 10. G.Rajasekar and A.Venkatesan, Location-2-domination for product of graphs, communicated.
- 11. P.J.Salter, Dominating and refrence sets in graphs, J. Math. Phy. Sci, 22 (1988) 445-455.
- 12. S.R.Cheney, *Domination Numbers of Semi-strong Products of Graphs*, Thesis and Dissertations, Virginia Commonwealth University.
- 13. S.Klaviar and N.Seifter, Dominating Cartesian products of cycles, *Discrete Applied Mathematics*, 59 (1995) 129-136.
- 14. T.Sitthiwirattham, Domination on Kronecker product of P_n , Applied Mathematical Sciences, 6 (2012) 4345 4352.