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Abstract. In this work, the generalized ) )(exp( ξϕ -expansion method is used to find 
traveling wave solutions of Korteweg-de Varies equation (KdV) and modified Liouville 
equation. This method gives travelling wave solutions and finally solitary wave solutions 
with respective graphs. The generalized −))(exp( ξϕ expansion method is very powerful 
and convenient mathematical tool for finding the exact solutions of nonlinear evolution 
equations arise in science and engineering.  
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1. Introduction 
Nonlinear evolution equations arise in many fields of sciences including physics, 
mechanics and material science. A lot of methods have been used to handle nonlinear 
evolution equations with constant coefficients and time dependent coefficients. Recently 
many effective methods for finding exact solutions of nonlinear evolution equations have 
been proposed, such as, the extended tan-method [1], enhanced ( )−GG /'  expansion 

method [2], modified Kudryashov method [3], exp-function method [4-5], exp ))(( ξΦ -
expansion method [6], F-expansion method [7], the Tanh method [8], Jacobi elliptic 
function rational expansion method [9], homotopy perturbation method [10], Modified 
simple equation method [11], the homogenous balance method [12], the variational 
method [13]. The objectives of this paper is to apply the generalized −))(exp( ξϕ  
expansion method for finding the exact traveling wave solutions of Korteweg-de Varies 
equation and modified Liouville equation which play an important role in mathematical 
physics.  

This paper is organized as follows: in section 2, we give the description of the 
generalized −))(exp( ξϕ expansion method. In section 3, we use this method to find the 
exact solutions of the nonlinear evolution equations pointed out above. In section 4, we 
discuss the results. In section 5, conclusion is given. 
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2. Description of the generalised −))(exp( ξϕ expansion method 

Suppose that a nonlinear partial differential equation, say in two independent variables x  
and t , is given by ,0),,,,,,( =LLLxxxtttxt uuuuuuP                                                (2.1)  

where ),( txuu =  is an unknown function, P  is a polynomial in ),( txuu =  and its 
various partial derivatives, in which the highest order derivatives and nonlinear terms are 
involved. In the following the main steps of the −))(exp( ξϕ expansion method are given: 
 

Step 1: The traveling wave variable )(),( ξutxu =  where tcx −=ξ  permits us 

reducing eq. (2.1) to an ODE for )(ξuu =   in the form 

,0),,,,,,( 2 =′′′′−′′′′− LLLuucucuucuP                             (2.2) 
 

Step 2: Suppose the solution of eq. (2.2) can be expressed in the following form 

                                    i
m

i
iau )))((exp()(

0

ξϕξ ∑
=

=                                                   (2.3) 

where ia  are constants, the positive integer m can be determined by considering the 

homogeneous balance between the highest order derivatives and the nonlinear terms 
appearing in eq. (2.2), and )(ξϕϕ =  satisfies the following equations: 

1,0))((exp)( ' ≥=±′ nnξϕξϕ                                             (2.4) 
Equation (2.4) gives the following solutions of the forms: 

[ ] 1,)(ln)/1()( 1 ≥+±−= ncnn ξξϕ                                               (2.5) 
 

Step 3: Now we substitute eq. (2.3) into eq. (2.2) and use eq. (2.4). As a result of this 
substitution, we get a polynomial of ))(exp( ξϕ and equate the coefficients of ))(exp( ξϕ   
to zero. This procedure gives a system of algebraic equations which can be solved to find 

01 .........,,., aaa mm −  . 

Step 4: Putting the values of 01 .........,,., aaa mm −  into eq. (2.3) along with general 

solutions of eq. (2.4) complete the determination of the solutions of eq. (2.1).  
 
3. Applications of the generalized −))(exp( ξϕ expansion method 
Now, we will apply the generalized −))(exp( ξϕ expansion method described in section 
2 to find the exact traveling wave solutions of  Korteweg-de Varies equation and 
modified Liouville equation. 
 
 

Example 1. Solution of Korteweg-de Varies (KdV) equation 
We know that the Korteweg-de Varies equation[14] is                                                                                                                           
                                              06 =+− txxxx uuuu                                                         (3.1) 

Suppose the traveling wave transformation is given by   
              )(),( ξutxu = , ctx −=ξ                                                (3.2) 

where c is a constant. Using eq. (3.2), eq. (3.1) is reduced to nonlinear ODE in the form 
                                             06 =′−′+′′′ ucuuu                                                           (3.3) 
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where the prime denotes the differential with respect to ξ . The corresponding exact 
solutions of eq. (3.1) for different values of n are obtained below: 
 

Case 1( 1=n ): Considering the homogeneous balance between u ′′′ and  uu ′ rising in eq. 
(3.3), we get 2=m . So from eq.(2.3) the solution can be written as 

 2
210 )(exp)(exp)( ξϕξϕξ aaau ++=                                         (3.4) 

where 210 ,, aaa  are unknown constants to be determined and )(ξϕ  satisfies the eq. (2.4) 

and this function is determined from eq. (2.5) by setting n 1= , Putting eq. (3.4) in the 
reduced ODE (3.3) and collecting the coefficients of ))(exp( ξϕ , we get the system of 
algebraic equations. Solving these equations by using Maple-13, we get the values of 
constants: 2,0,)6/1( 210 −=== aaca   .  

Hence, the solution of eq. (3.3) takes the form: 
2

1
1 )(

2

6
)(

ξ
ξ

±±
−=

c

c
u  

Finally, putting ctx −=ξ , we get the following desired exact solution of eq. (3.1)  

2
1

1 )]([

2

6
),(

ctxc

c
txu

−±±
−=                                                       (3.5) 

Similarly, for ,....4,3,2=n  the corresponding trail solution of the eq. (3.3), values of 
constants and exact solutions of eq. (3.1) are given  below: 
 

Case 2 ( 2=n ): The trail solution of eq. (3.3): 
4

4
3

3
2

210 ))(exp())(exp())(exp())(exp()( ξϕξϕξϕξϕξ aaaaau ++++=           (3.6) 

Values of constants:  8,0,0,0,)6/1( 43210 −===== aaaaca                                           

The exact solution of eq.(3.1):   
2

1
2 )](22[

8

6
),(

ctxc

c
txu

−±±
−=                             (3.7) 

Case 3 ( 3=n ):  The trail solution of eq. (3.3): 
6

6
5

5
4

4
3

3
2

210 ))(exp())(exp())(exp())(exp())(exp())(exp()( ξϕξϕξϕξϕξϕξϕξ aaaaaaau ++++++=                                                                                      

Values of constants: 18,0,0,0,0,0,)6/1( 6543210 −======= aaaaaaca   

The exact solution of eq. (3.1):  
2

1
3 )](33[

18

6
),(

ctxc

c
txu

−±±
−=                              (3.8) 

Case 4 ( 4=n ): The trail solution of eq. (3.3):  

           ))(exp())(exp())(exp())(exp(

))(exp())(exp())(exp())(exp()(
8

8
7

7
6

6
5

5

4
4

3
3

2
210

ξϕξϕξϕξϕ
ξϕξϕξϕξϕξ

aaaa

aaaaau

++

+++++=
                (3.9) 

Values of constants: 32,0,0,,0,0,0,0,)6/1( 87643210 −======== aaacaaaaca   

The exact solution of eq. (3.1):  
2

1
4 )](44[

32

6
),(

ctxc

c
txu

−±±
−=                           (3.10) 
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In general, the exact solution of eq. (3.1): 
2

1

2

)]([

)1(2

6
),(

ctxnnc

nc
txun −±±

−−=   

 

 Velocity profile of ),(1 txu  when 1=c  

 
Fig.1(3d plot): profile of (10) for 11 −=c 0 

Velocity profile of ),(2 txu  when 2=c                           

           
Fig.2(3d plot): profile of (12) for 201 −=c  

                                   
 

      Velocity profile of ),(3 txu  when 3=c  

 
Fig.3(3d plot): profile of (14) for 11 −=c 00 

Velocity profile of ),(4 txu  when 4=c  

  
Fig.4(3d plot): profile of (16) for 901 −=c  

Figure 1-4: Graphical representation of  Korteweg-de Varies (KdV) equation 
 
The Figure 1 shows that the waves having high wave speed propagate with more height. 
 
Example2. Solution of modified Liouville equation 
We know that the modified Liouville equation[15] is 

w
xxtt bewaw β+= 2                                                        (3.11) 

which is found in hydrodynamics, where ),( txw  is the stream function and β,,ba   are 

nonzero constants. Let us consider that the transformation ,),( wetxu β= so that  

 uw ln)/1( β=                                                                    (3.12) 

023 =′′+′− uuuku                                                            (3.13) 

where 
22 ca

b
k

−
= β  and .ac ±≠ For different values of n  the solutions of eq. (3.11) are:      

Case-1 ( 1=n ): Solution is  [ ] 










−+
−=

2
1

22

1
)(

)(2
ln

1
),(

ctxcb

ac
txw

ββ
                           (3.14) 
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Case-2 ( 2=n ):   Solution is [ ] 









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                          (3.15) 

Case-3 ( 3=n ) Solutionis  [ ] 







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                             (3.16) 

Case-4 ( 4=n ): Solution is  [ ] 









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−=
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22

4
)(

)(2
ln

1
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ac
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ββ
                          (3.17)  

In general, the solution of eq. (3.11)  is [ ] 










−+
−=

2
1

22

)(

)(2
ln

1
),(

ctxcb

ac
txwn ββ

           (3.18)   

From the above it is clear that the exact solutions of eq. (3.11) are same for all cases. 
 
 

 
Fig.5(3d plot): Solution profile of ),( txw  

for  1,1,1,1 1 ==== cba β  

Fig.6(2d plot): Solution profile of 
),( txw  for  1,1,1,1 1 ==== cba β  

Figure 5-6: Graphical representation of modified Liouville equation 
                Velocity profile of ),( txw with wave speed, 10=c  

 

 
Fig.7(3d plot): Solution profile of 

),( txw for  1,1,1,1 1 ==== cba β  
Fig.8(2d plot): Solution profile of 

),( txw for  1,1,1,1 1 ==== cba β  
Figure 7-8: Velocity profile of ),( txw with wave speed, 11=c  

4. Results and discussions  
When the wave speed is 1, Fig. 1(3d plot) shows that the height of the velocity profile is 
0.16 unit (approximate). For wave speed 2, Fig.2 (3d plot) yields that the height of the 
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wave is 0.331 unit (approximate). Fig. 3(3d plot) gives that when wave speed is 3, the 
height of the wave is 0.49985 unit (approximate). When wave speed is 4, the height of 
the wave is 0.66660 unit (approximate). Again, from Fig. 5(3d plot) it is clear that the 
height of wave is 8 unit (approximate) for wave speed 10. Also for wave speed 11, from 
Fig. 7(3d plot) we see that the height of the wave is 10 unit.  From the above discussion it 
is clear that the height of the wave increases with the increase of wave speed.  

5. Conclusion 
We can say that this method has capacity to minimize the size of computational work 
compared to other existing techniques. It removes complexity to get new solutions of 
non-linear evolution equations.  
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