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Abstract. In this work, the generalizedxp@(¢) ) -expansion method is used to find
traveling wave solutions of Korteweg-de Varies amum(KdV) and modified Liouville
equation. This method gives travelling wave sohgiand finally solitary wave solutions
with respective graphs. The generalizxdp@(¢)) —expansion method is very powerful
and convenient mathematical tool for finding theaxsolutions of nonlinear evolution
equations arise in science and engineering.
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1. Introduction

Nonlinear evolution equations arise in many fieldf sciences including physics,

mechanics and material science. A lot of methode lizeen used to handle nonlinear
evolution equations with constant coefficients ¢éintk dependent coefficients. Recently
many effective methods for finding exact soluti@fisionlinear evolution equations have

been proposed, such as, the extended tan-methocériﬂ]]ancedG'/G)— expansion
method [2], modified Kudryashov method [3], exp-dtion method [4-5], ex(P(£))-
expansion method [6], F-expansion method [7], tleahlr method [8], Jacobi elliptic
function rational expansion method [9], homotopytymation method [10], Modified
simple equation method [11], the homogenous balanethod [12], the variational
method [13]. The objectives of this paper is to lgpihe generalizedexp@($)) —
expansion method for finding the exact travelingravaolutions of Korteweg-de Varies
equation and modified Liouville equation which play important role in mathematical
hysics.
i This paper is organized as follows: in section 2, give the description of the
generalizedexp@(¢)) —expansion method. In section 3, we use this methbduhd the
exact solutions of the nonlinear evolution equatipointed out above. In section 4, we
discuss the results. In section 5, conclusionveryi
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2. Description of the generalised exp@(¢)) — expansion method

Suppose that a nonlinear partial differential elquatsay in two independent variablgs
andt, is given byP(U,U,, U, , Uy, Uy, Uy ,eoeeeeeee )=0, (.1
where u =u(x,t) is an unknown functionP is a polynomial inu=u(x,t) and its
various partial derivatives, in which the highestey derivatives and nonlinear terms are
involved. In the following the main steps of th&p@(£)) —expansion method are given:

Step 1. The traveling wave variablei(x,t) =u(é) where { =x—ct permits us
reducing eq. (2.1) to an ODE for=u(&) in the form

P(u,—cu’,u’,c’u’,—cu",u",-----ee-- )=0, (2.2)
Step 2: Suppose the solution of eq. (2.2) can be expraasbe following form
u(é) = a (exp@(s)) 2.3)
i=0

where g, are constants, the positive integarcan be determined by considering the

homogeneous balance between the highest orderatieels and the nonlinear terms
appearing in eq. (2.2), argl= ¢(¢) satisfies the following equations:

¢'(&)x (expg(§))"=0, n=21 (2.4)
Equation (2.4) gives the following solutions of floems:
#(&) =-@Wn)In[xn( +c)|n=1 (2.5)

Step 3: Now we substitute eq. (2.3) into eq. (2.2) and ege(2.4). As a result of this
substitution, we get a polynomial exp@(<)) and equate the coefficients ekp@(<))
to zero. This procedure gives a system of algelegimtions which can be solved to find

Step 4: Putting the values ol ,a,,.......... 4, into eq. (2.3) along with general
solutions of eq. (2.4) complete the determinatibthe solutions of eq. (2.1).

3. Applications of the generalized exp@(¢)) —expansion method
Now, we will apply the generalizeelxp@(¢)) —expansion method described in section

2 to find the exact traveling wave solutions of rt€éweg-de Varies equation and
modified Liouville equation.

Example 1. Solution of Korteweg-de Varies (KdV) equation
We know that the Korteweg-de Varies equation|i$4]

u,, —6uu, +u, =0 (3.1)
Suppose the traveling wave transformation is glwen

u(x,t) =u(é), £ =x-ct (B.2
wherec is a constant. Using eq. (3.2), eq. (3.1) is reduo nonlinear ODE in the form

u"+6uu’ —-cu' =0 (3.3)
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where the prime denotes the differential with resge . The corresponding exact
solutions of eq. (3.1) for different valuesroére obtained below:

Case 1(n=1): Considering the homogeneous balance betw&esnd uu' rising in eq.
(3.3), we getm= 2. So from eq.(2.3) the solution can be written as

u(é) =a, +a, expp(<) +a, expp($)’ (3.4)
where a,,a,,a, are unknown constants to be determined a(f) satisfies the eq. (2.4)
and this function is determined from eq. (2.5) ktting n=1, Putting eq. (3.4) in the
reduced ODE (3.3) and collecting the coefficierteerp@(£)), we get the system of
algebraic equations. Solving these equations byguSlaple-13, we get the values of
constantsa, = (1/6)c,a, =0,a, = -2 .

. n_C_ 2
Hence, the solution of eq. (3.3) takes the fou(<£) = 6 (20 22)
Finally, putting & = Xx—ct, we get the following desired exact solution of 1)

u(xt) =S - 2
BUYT6 e (x—c)]?

Similarly, for n= 234,.... the corresponding trail solution of the eq. (3\8lues of
constants and exact solutions of eq. (3.1) arengbvelow:
Case2 (n=2): The trail solution of eq. (3.3):
u(&) = a, +a exp@(f)) +a, exp@(£))” +a, exp@(&))’ +a, exp@(£))* (3.6)
Values of constantsa,= (1/6)c,a, =0,a, =0,a, =0,a, =—8
. c 8

The exact solution of eq.(3.1)u,(X,t) = 5 - (226, % 2(x—CO) (3.7)
Case 3 (n=3): The trail solution of eq. (3.3):

u(é) =a, +a exp@(£)) +a, expp(é))’ +a, exp(é))’ +a, expp(é))’ +a, expp(é))’ +a; expp(<))°
Values of constantsa,= (1/6)c,a, =0,a, =0,a, =0,a, =0,a, =0,a, =-18
c_ 18

6 [+3c, +3(x—ct)]’
Case4 (n=4): The trail solution of eq. (3.3):

u() = 3, +a, expi(&)) +a, exp@(£)’ +a, expP(£))’ + a, exp@B(&)" + (3.9)
as expp(£))° + a; exp(<))°a, exp@(£))’ +a; exp@(<))°
Values of constantsa,= (1/6)c,a, =0,a, =0,a, =0,a, =0,c,a, =0,a, =0,8, =-32

The exact solution of eq. (3.1)1,(Xx,t) = c_ 32 .
6 [4c +4(x—ct)]

(3.5)

The exact solution of eq. (3.1)1,(x,t) =

(3.8)

(3.10)
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_1\2
In general, the exact solution of eq. (3.@)(X,t) =L 2n-1) 5
6 [£nc +n(x-—ct)]

Velocity profile of y(xt) whenc=1 Velocity profile of u,(xt) whenc=2

a

Fig.1(3d plot): profile of {0) for g =—10

Fig.2(3d plot): profile of {2) for ¢, =-2C

Velocity profile ofu(xt) whenc=3 Velocity profile of u,(xt) whenc=4

Fig.3(3d plot): profile of 14) forg=-00 | Fig.4(3d plot): profile of 16) for ¢, =—90
Figure 1-4: Graphical representation of Korteweg-de VariesKeguation

The Figure 1 shows that the waves having high vegeed propagate with more height.

Example2. Solution of modified Liouville equation
We know that the modified Liouville equation[15] is

w, =a’w,, +be™ (3.12)
which is found in hydrodynamics, whewvgx,t) is the stream function ar@ b, 5 are
nonzero constants. Let us consider that the tramsftoon u(x,t) = e so that

w=(1/p)Inu (3.12)
ku®*-u'?+uu"=0 (3.13)
wherek = 2b'3 >~ andc # a. For different values oh the solutions of eq. (3.11) are:

a —c

Case-1(n=1): Solution is W, (X;t) =—;In( (3.14)

2(c* -a%) J
bAlc, + (x-ct)’
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Al o _1 2(c*-a’)
Case-2 (n=2): Solution isw,(X,t) 7 ln[bﬂ[cl " (X—Ct)]zj (3.15)
Case-3 (n=3) Solutionis W, (X,t) e 2Ac*-a’) (3.16)
B bAe +(x-a)? |
Case-4 (n=4): Solution is W, (x,t) = % In(bﬁ[ifi (:i C)t)]zj (3.17)
. . 1 2(c*-a’)
I l, th I feq. (3.11 1) ==I 3.18
n general, the solution of eq. ( ) Vig (x,t) 3 n(bﬁ[cl " (x—ct)]zJ ( )

From the above it is clear that the exact solutmfreq. (3.11) are same for all cases.

Fig.5(3d plot): Solution profile ofv(x,t) Fig.6(2d plot): Solution profile o
for a=1b=18=1c =1 w(x,t) for a=1b=18=1c =1
Figure5-6: Graphical representation of modified Liouville etjoa
Velocity profile ofn(x,t) with wave speed¢ =10

Fig.7(3d plot): Solution profile of Fig.8(2d plot): Solution profile of

w(x,t)for a=1b=18=1c =1 w(xt)for a=1b=18=1¢ =1
Figure 7-8: Velocity profile of w(x,t) with wave speed¢ =11

4. Results and discussions

When the wave speed is 1, Fig. 1(3d plot) showsth®height of the velocity profile is

0.16 unit (approximate). For wave speed 2, Fig® [{®t) yields that the height of the
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wave is 0.331 unit (approximate). Fig. 3(3d plat)eg that when wave speed is 3, the
height of the wave is 0.49985 unit (approximateheW wave speed is 4, the height of
the wave is 0.66660 unit (approximate). Again, frbig. 5(3d plot) it is clear that the
height of wave is 8 unit (approximate) for waveexpd 0. Also for wave speed 11, from
Fig. 7(3d plot) we see that the height of the wigvE0 unit. From the above discussion it
is clear that the height of the wave increases thighncrease of wave speed.

5. Conclusion

We can say that this method has capacity to mimirtiie size of computational work
compared to other existing techniques. It remowasaptexity to get new solutions of
non-linear evolution equations.
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