Annals of Generalized Minimal Closed Sets in Bitopological Spaces

Suwarnlatha N. Banasode¹ and Mandakini A. Desurkar²

¹Department of Mathematics
K.L.E. Society’s, R.L. Science Institute, Belgaum - 590001
E-mail: suwarn_nam@yahoo.co.in

²Department of Mathematics
K.L.E. Dr M S Sheshgiri College of Engg. & Tech., Belgaum-590008
Corresponding author. E-mail: mdesurkar9@gmail.com

Received 30 July 2017; accepted 10 September 2017

Abstract. In this paper, we introduce and characterize generalized minimal closed sets in bitopological spaces and study some of their properties. A subset A of X is said to be \((\tau_i, \tau_j)\)-generalized minimal closed (briefly \((\tau_i, \tau_j)\)-g-m closed) set in a bitopological space if \(\tau_j\)-cl \((A)\) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(\tau_i\)- minimal open set in \((X; \tau_i, \tau_j)\).

Keywords: \(\tau_i\) minimal open set, \(\tau_i\)-maximal closed set, \((\tau_i, \tau_j)\)-g-closed set, \((\tau_i, \tau_j)\)-\(\omega\)-closed set, \((\tau_i, \tau_j)\)-\(g\)-open set

AMS Mathematics Subject Classification (2010): 54A05, 54B05

1. Introduction and preliminaries

The triple \((X; \tau_i, \tau_j)\) where X is a set and \(\tau_i\) and \(\tau_j\) are two topologies on X is a bitopological space. Kelly [5] initiated the systematic study of such spaces. After the work of Kelly [5] various authors [2,3,7,8] turned their attention to generalization of various concepts of topology by considering bitopological spaces. The concept of generalized closed sets in bitopological spaces was introduced and investigated by T [7].

Throughout this chapter \((X; \tau_i, \tau_j)\) denote non empty bitopological spaces on which no separation axioms are assumed unless otherwise mentioned and the fixed integers i, j \(\in\) {1,2}.

We recall the following definitions, which are useful in the sequel.

Definition 1.1. Let i, j \(\in\) {1,2} be fixed integers. In a bitopological space \((X; \tau_i, \tau_j)\), a subset A of X is said to be

(i) \((\tau_i, \tau_j)\)-g-closed set [7] if \(\tau_j\)-cl \((A)\) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(\tau_i\)-open set.

(ii) \((\tau_i, \tau_j)\)-\(g\)-open set iff A \(c^c\) is \((\tau_i, \tau_j)\)-g-closed set.

(iii) \((\tau_i, \tau_j)\)-\(\omega\)-closed set [6] if \(\tau_j\)-cl \((A)\) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(\tau_i\)-semi open set in \((X, \tau_i)\).

(iv) \((\tau_i, \tau_j)\)-\(\omega\)-open set [6] iff A \(c^c\) is \((\tau_i, \tau_j)\)-\(\omega\)-closed set.
Suwarnlatha N. Banasode and Mandakini A. Desurkar

Definition 1.2. Let \(i, j \in \{1, 2\} \) be fixed integers. In a bitopological space \((X; \tau_i, \tau_j)\), a proper nonempty \((\tau_i, \tau_j)\)-g-open set \(A \) of \((X; \tau_i, \tau_j)\) is said to be

(i) \((\tau_i, \tau_j)\)-minimal g-open (resp. \((\tau_i, \tau_j)\)-minimal g-closed) set if any \((\tau_i, \tau_j)\)-g-open (respectively \((\tau_i, \tau_j)\)-g-closed) subset of \((X; \tau_i, \tau_j)\) which is contained in \(A \) is either \(A \) or \(\emptyset \).

(ii) \((\tau_i, \tau_j)\)-maximal g-open (resp. \((\tau_i, \tau_j)\)-maximal g-closed) set if any \((\tau_i, \tau_j)\)-g-open (respectively \((\tau_i, \tau_j)\)-g-closed) subset of \((X; \tau_i, \tau_j)\) which contains \(A \) is either \(A \) or \(X \).

2. Generalized minimal closed sets in bitopological spaces

In this section, we introduce and investigate generalized minimal closed sets in bitopological spaces.

Definition 2.1. Let \(i, j \in \{1, 2\} \) be fixed integers. In a bitopological space \((X; \tau_i, \tau_j)\), a subset \(A \) of \(X \) is said to be \((\tau_i, \tau_j)\)-generalized minimal closed (briefly \((\tau_i, \tau_j)\)-g-m-closed) set if \(\tau_i\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_i\)-minimal open set in \((X; \tau_i, \tau_j)\).

Remark 2.2. By setting \(\tau_i = \tau_j \) in the Definition 2.1, a \((\tau_i, \tau_i)\)-g-m-closed set is a g-closed set in a topological space.

Theorem 2.3. Let \(i, j \in \{1, 2\} \) be fixed integers. Every \((\tau_i, \tau_j)\)-g-m-closed set in a bitopological space \((X; \tau_i, \tau_j)\) is a \((\tau_i, \tau_j)\)-g-closed set.

Proof: Let \(A \subseteq X \) be any \((\tau_i, \tau_j)\)-g-m-closed set in \((X; \tau_i, \tau_j)\). By Definition 2.1 \(\tau_i\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\tau_i\)-minimal open set. But every minimal open set is an open set. Therefore \(\tau_i\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is a \(\tau_i\)-open set. Hence \(A \) is a \((\tau_i, \tau_j)\)-g-closed set in \((X; \tau_i, \tau_j)\).

Remark 2.4. Converse of the Theorem 2.3 need not be true.

Example 2.5. Let \(X = \{a, b, c, d\} \) with \(\tau_1 = \{\emptyset, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \} \) and \(\tau_2 = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\} \).

\((\tau_1, \tau_2)\)-g-m-closed sets = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.

\((\tau_2, \tau_2)\)-g-closed sets = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.

Theorem 2.6. Let \(i, j \in \{1, 2\} \) be fixed integers. Every \((\tau_i, \tau_j)\)-g-m-closed set in a bitopological space \((X; \tau_i, \tau_j)\) is a \((\tau_i, \tau_j)\)-\(\omega\)-closed set.

Proof: Let \(A \subseteq X \) be any \((\tau_i, \tau_j)\)-g-m-closed set in \((X; \tau_i, \tau_j)\). By Definition 2.1 \(\tau_i\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is a \(\tau_i\)-minimal open set. But every minimal open set is an open set and hence is a semi-open set. Therefore \(\tau_i\text{-cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is a \(\tau_i\)-semi-open set. Hence \(A \) is a \((\tau_i, \tau_j)\)-\(\omega\)-closed set in \((X; \tau_i, \tau_j)\).

Remark 2.7. Converse of the above Theorem 2.6 need not be true.
Example 2.8. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{b\}, \{a, b\}, \{c, d\}, \{b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. ($\tau_1$, τ_2)-g-m closed sets: $\{\phi, \{c\}, \{d\}, \{c, d\}\}$.

(τ_2, τ_1)-g-m closed sets: $\{\phi, \{a\}\}$.

(τ_1, τ_2)-ω-closed sets $= \{\phi, \{a\}, \{c\}, \{d\}, \{a, c, d\}, X\}$.

(τ_2, τ_1)-ω-closed sets $= \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, X\}$.

Proposition 2.9. Let $i, j \in \{1, 2\}$ be fixed integers. If A is a τ_i-minimal closed subset of a bitopological space $(X; \tau_i, \tau_j)$, then A is a (τ_i, τ_j)-g-m closed set in $(X; \tau_i, \tau_j)$.

Proof: Let $A \subseteq U$, such that U is a τ_i-minimal open set. By hypothesis A is a τ_i-minimal closed subset of $(X; \tau_i, \tau_j)$, then A is a τ_i-closed subset of $(X; \tau_i, \tau_j)$, so that τ_i-cl$(A) = A$. Therefore, τ_i-cl$(A) \subseteq A$, whenever $A \subseteq U$ and U is a τ_i-minimal open set in $(X; \tau_i, \tau_j)$. Hence A is a (τ_i, τ_j)-g-m closed set in $(X; \tau_i, \tau_j)$.

Remark 2.10. If $\tau_i \subseteq \tau_j$ in $(X; \tau_i, \tau_j)$ then, (τ_2, τ_1)-g-m closed sets $\not\subseteq (\tau_1, \tau_2)$-g-$m$ closed sets.

Example 2.11. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$.($\tau_1$, τ_2)-g-m closed sets: $\{\phi, \{a\}, \{c\}, \{d\}, \{c, d\}\}$.

(τ_2, τ_1)-g-m closed sets: $\{\phi, \{b\}, \{c\}, \{d\}, \{c, d\}\}$.

Theorem 2.12. Let $i, j \in \{1, 2\}$ be fixed integers. If A is a (τ_i, τ_j)-g-mi closed set in a bitopological space $(X; \tau_i, \tau_j)$ and $A \subseteq B \subseteq \tau_j$-cl$(A)$ then B is a (τ_i, τ_j)-g-m closed set in a bitopological space $(X; \tau_i, \tau_j)$.

Proof: Let B be any set such that $B \subseteq U$ and U is a τ_j-minimal open set in $(X; \tau_j, \tau_i)$. Given that $A \subseteq B \subseteq \tau_j$-(cl) (i)

Since $A \subseteq B \subseteq U$, then $A \subseteq U$ where U is a τ_j-minimal open set. But A is a (τ_i, τ_j)-g-m closed set, by Definition 2.1, τ_j-cl$(A) \subseteq U$ whenever $A \subseteq U$ and U is a τ_j-minimal open set in $(X; \tau_j, \tau_i)$. From (i) $A \subseteq B \subseteq \tau_j$-cl$(A)$ implies $B \subseteq \tau_j$-cl(A) which implies τ_i-cl$(B) \subseteq \tau_j$-cl$(\tau_j$-cl$(A)) = \tau_j$-cl(A). That is τ_i-cl$(B) \subseteq \tau_j$-cl(A). But τ_j-cl$(A) \subseteq U$. Therefore, τ_j-cl$(B) \subseteq U$ whenever $B \subseteq U$ and U is a τ_j-minimal open set in $(X; \tau_j, \tau_i)$. Hence B is a (τ_i, τ_j)-g-m closed set in $(X; \tau_i, \tau_j)$.

Theorem 2.13. Let $i, j \in \{1, 2\}$ be fixed integers. If A is a (τ_i, τ_j)-g-mi closed set in a bitopological space $(X; \tau_i, \tau_j)$, then τ_j-cl$(A) \cap A$ contains no nonempty τ_j-maximal closed subset.

Proof: Let F be a τ_i-maximal closed subset of cl$(A) \cap A$. Then F^c is a τ_i-minimal open set. Let A be such that $A \subseteq F^c$ where F^c is a τ_i-minimal open set in $(X; \tau_i, \tau_j)$. Since A is a (τ_i, τ_j)-g-m closed set, by the Definition 2.1, τ_j-cl$(A) \subseteq F$ whenever $A \subseteq F^c$ and F^c is a τ_i-minimal open set in $(X; \tau_i, \tau_j)$. So $F \subseteq [\tau_j$-cl$(A)]^c$. On the other hand $F \subseteq \tau_j$-cl(A). Therefore $F \subseteq [\tau_j$-cl$(A)] \cap \tau_j$-cl$(A) = \phi$. 271
Suwarnlatha N. Banasode and Mandakini A. Desurkar

Therefore $F = \emptyset$.

Theorem 2.14. Let $i, j \in \{1, 2\}$ be fixed integers. If A is a (τ_i, τ_j)-g-m closed set in a bitopological space $(X; \tau_i, \tau_j)$, then $\tau_{ij} - \text{cl}(A) - A$ contains no nonempty τ_i - closed subset.

Proof: Let A be a (τ_i, τ_j)-g-m closed set in $(X; \tau_i, \tau_j)$ and F be a nonempty τ_i - closed set contained in $\tau_{ij} - \text{cl}(A) - A$. So $F \subseteq \tau_{ij} - \text{cl}(A) - A = \tau_{ij} - \text{cl}((A \cap A^c))$. Then $F \subseteq \tau_{ij} - \text{cl}(A)$ and $F \subseteq A^c$. Now $F \subseteq A^c$ means $A \subseteq F^c$ where F^c is an open set. Since every (τ_i, τ_j)-g-m closed set in a bitopological space $(X; \tau_i, \tau_j)$ is a (τ_i, τ_j)-g-m closed set, A is a (τ_i, τ_j)-g-m closed set. Then by the Definition [7], $\tau_{ij} - \text{cl}(A) \subseteq F^c$ whenever $A \subseteq F^c$ and F^c is an open set in $(X; \tau_i, \tau_j)$, so that $F \subseteq [\tau_{ij} - \text{cl}(A)]^c$. On the other hand $F \subseteq \tau_{ij} - \text{cl}(A)$, so that $F \subseteq [\tau_{ij} - \text{cl}(A)]^c \cap \tau_{ij} - \text{cl}(A) = \emptyset$. Therefore $F = \emptyset$.

Corollary 2.15. Let $i, j \in \{1, 2\}$ be fixed integers. A (τ_i, τ_j)-g-m closed set A in a bitopological space $(X; \tau_i, \tau_j)$ is τ_{ij}-closed iff $\tau_{ij} - \text{cl}(A) - A$ is τ_i - closed.

Proof: Let A be any (τ_i, τ_j)-g-m closed set in a bitopological space $(X; \tau_i, \tau_j)$ which is a τ_{ij}-closed set so that $\tau_{ij} - \text{cl}(A) = A$, then $\tau_{ij} - \text{cl}(A) - A = \emptyset$. Therefore $\tau_{ij} - \text{cl}(A) - A$ is a τ_i - closed set.

Conversely, let A be any (τ_i, τ_j)-g-m closed set in a bitopological space $(X; \tau_i, \tau_j)$ such that $\tau_{ij} - \text{cl}(A) - A$ is a τ_i - closed set. Since $\tau_{ij} - \text{cl}(A)$ - A is a subset of itself and is a τ_i - closed set, by the Theorem 2.14, $\tau_{ij} - \text{cl}(A) - A = \emptyset$, so that $A = \tau_{ij} - \text{cl}(A)$. Therefore A is a τ_{ij}-closed set.

Proposition 2.16. Let $i, j \in \{1, 2\}$ be fixed integers. If A is an τ_i minimal open set and a (τ_i, τ_j)-g-m closed set, then A is a τ_{ij}-closed set.

Proof: Since $A \subseteq A$ and as A is a τ_i-minimal open and a (τ_i, τ_j)-g-m closed set, we have $\text{cl}(A) \subseteq A$. Therefore $\tau_{ij} - \text{cl}(A) = A$. Hence A is a τ_{ij}-closed set.

Theorem 2.17. Let $i, j \in \{1, 2\}$ be fixed integers. If A is a (τ_i, τ_j)-g-m closed set in a bitopological space $(X; \tau_i, \tau_j)$, then for each $x \in \tau_{ij} - \text{cl}(A)$, $\tau_{ij} - \text{cl} \{x\} \cap A \neq \emptyset$.

Proof: Let A be any (τ_i, τ_j)-g-m closed set in a bitopological space $(X; \tau_i, \tau_j)$, such that A contains no nonempty τ_i - closed set. Then $A \subseteq [\tau_{ij} - \text{cl}(A)]^c$. But A is a (τ_i, τ_j)-g-m closed set. By the Definition 2.1 $\tau_{ij} - \text{cl}(A) \subseteq [\tau_{ij} - \text{cl}(A)]^c$. This is a contradiction to the fact that $x \in \tau_{ij} - \text{cl}(A)$. Therefore $\tau_{ij} - \text{cl}(A) \cap A \neq \emptyset$.

Lemma 2.18. If $Y \subseteq X$ is any subspace of a bitopological space $(X; \tau_1, \tau_2)$ and U is any τ_i-minimal open set in $(X; \tau_i, \tau_j)$ then $Y \cap U$ is a τ_{i_Y} minimal open set.

Proof: Let U be a τ_i-minimal open set in a bitopological space $(X; \tau_1, \tau_2)$ such that $Y \cap U$ is not a τ_{i_Y} minimal open set in Y. Then there exists an τ_{i_Y} open set $G \neq Y$ in Y such that $G \subseteq Y \cap U$ where $G = Y \cap H$ and H is an τ_i-open set in $(X; \tau_1, \tau_2)$. Now $Y \cap H \subseteq Y \cap U$.
Generalized Minimal Closed Sets in Bitopological Spaces

implies $H \subseteq U$. This contradicts the fact that U is a τ_i-minimal open set. Therefore $Y \cap U$ is a τ_i-γ minimal open set.

Theorem 2.21. Let $i, j \in \{1, 2\}$ be fixed integers. If $B \subseteq A \subseteq X$ such that B is a (τ_i, τ_i)-g-m_i closed relative to A and that A is an τ_i-open and (τ_i, τ_i)-g-m_i closed set in $(X; \tau_i, \tau_i)$ then B is a (τ_i, τ_i)-g-m_i closed set in $(X; \tau_i, \tau_i)$.

Proof: Let $B \subseteq U$ such that U is a τ_i-minimal open set in $(X; \tau_i, \tau_i)$. Given $B \subseteq A \subseteq X$, so $B \subseteq A \cap U$ and A is an τ_i-open set in X. Then by the Lemma 2.20 $A \cap U$ is a τ_i-minimal open set in X. Now $A \cap U \subseteq A \subseteq X$, then $A \cap U$ is a τ_i-minimal open set in A by the Lemma 2.19. Therefore $B \subseteq A \cap U$ and $A \cap U$ is a τ_i-minimal open set in A. By hypothesis $A \cap \tau_i\text{-cl}(B) \subseteq A \cap U$ implies $\tau_i\text{-cl}(B) \subseteq U$. Hence B is a (τ_i, τ_i)-g-m_i closed set in $(X; \tau_i, \tau_i)$.

Definition 2.22. Let $i, j \in \{1, 2\}$ be fixed integers. In a bitopological space $(X; \tau_i, \tau_j)$, a subset A of X is said to be a (τ_i, τ_j)-generalized maximal open (briefly (τ_i, τ_j)-g-m_a open) set iff A^Z is a (τ_i, τ_j)-g-m_a generalized minimal closed set.

Theorem 2.23. Let $i, j \in \{1, 2\}$ be fixed integers. A subset A of a bitopological space $(X; \tau_i, \tau_j)$ is a (τ_i, τ_j)-g-m_a open set iff $F \subseteq \tau_i\text{-int} A$ whenever $F \subseteq A$ and F is a τ_i-maximal closed set in $(X; \tau_i, \tau_j)$.
Suwarnlatha N. Banasode and Mandakini A. Desurkar

Proof: Let A be any (τ_i, τ_j)-g-m set in $(X; \tau_i, \tau_j)$ such that $F \subseteq A$ and F is a τ_i-maximal closed set in $(X; \tau_i, \tau_j)$. Then, by the Definition 2.22, A^c is a (τ_i, τ_j)-g-m closed set in $(X; \tau_i, \tau_j)$. That is A^c is a (τ_i, τ_j)-g-m closed set whenever $A^c \subseteq F^c$. Therefore by the Definition 2.1, (τ_i, τ_j)-g-m closed set whenever $A^c \subseteq F^c$ and F is a τ_i-minimal open set. Then $(\tau_i$-int $A^c) \subseteq F^c$, which implies $F \subseteq \text{int} A$. Conversely, let A be any subset of X such that $F \subseteq \text{int} A$ whenever $F \subseteq A$ and F is a τ_i-maximal closed set in $(X; \tau_i, \tau_j)$. Then $(\tau_i$-int $A^c) \subseteq F^c$ whenever $A^c \subseteq F$ and F is a τ_i-minimal open set. We have τ_i-$cl (A^c) \subseteq F^c$ whenever $A^c \subseteq F$ and F is a τ_i-minimal open set. Therefore by the Definition 2.1, A^c is a (τ_i, τ_j)-g-m closed set. Thus A is a (τ_i, τ_j)-g-m open set in $(X; \tau_i, \tau_j)$.

Theorem 2.24. Let $i, j \in \{1, 2\}$ be fixed integers. Every (τ_i, τ_j)-g-m open set is a (τ_i, τ_j)-g-$open$ set in a bitopological space $(X; \tau_i, \tau_j)$.

Proof: Let A be a (τ_i, τ_j)-g-m open set in $(X; \tau_i, \tau_j)$. Then A^c is a (τ_i, τ_j)-g-m closed set and by the Theorem 2.3, A^c is a (τ_i, τ_j)-g-$open$ set in $(X; \tau_i, \tau_j)$.

Remark 2.25. Converse of the Theorem 2.24 need not be true.

Example 2.26. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{b, c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$.

(τ_1, τ_2)-g-m open sets: $\{\{a, b\}, \{a, b, c\}, \{a, b, d\}, \{b, c\}, \{b, d\}\}$.

(τ_1, τ_2)-g-$open$ sets: $\{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}\}$.

Theorem 2.27. Let $i, j \in \{1, 2\}$ be fixed integers. Every (τ_i, τ_j)-g-m open set is a (τ_i, τ_j)-ω-$open$ set in a bitopological space $(X; \tau_i, \tau_j)$.

Proof: Let A be a (τ_i, τ_j)-g-m open set in $(X; \tau_i, \tau_j)$. Then A^c is a (τ_i, τ_j)-g-m closed set and by the Theorem 2.6, A^c is a (τ_i, τ_j)-ω-$open$ set in $(X; \tau_i, \tau_j)$.

Remark 2.28. Converse of the Theorem 2.27 need not be true.

Example 2.29. Let $X = \{a, b, c, d\}$ with $\tau_1 = \{\phi, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$.

(τ_1, τ_2)-g-m open sets: $\{\{a, b\}, \{a, b, c\}, \{a, b, d\}\}$.

(τ_1, τ_2)-ω-$open$ sets: $\{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$.

274
Generalized Minimal Closed Sets in Bitopological Spaces

Theorem 2.30. Let i, j ∈ \{1, 2\} be fixed integers. If \(\tau_i \)-int \(A \subseteq B \subseteq A \) and \(A \) is a \((\tau_i, \tau_j)\)-g-m, open set in a bitopological space \((X; \tau_i, \tau_j)\), then \(B \) is a \((\tau_i, \tau_j)\)-g-m, open set in \((X; \tau_i, \tau_j)\).

Proof: Given \(\tau_i \)-int \(A \subseteq B \subseteq A \) and \(A \) is a \((\tau_i, \tau_j)\)-g-m, open set in \((X; \tau_i, \tau_j)\). Then \(A^c \subseteq B^c \subseteq (\tau_i \text{-int } A)^c \) and \(A^c \) is a \((\tau_i, \tau_j)\)-g-m, closed set. That is \(A^c \subseteq B^c \subseteq \tau_j \text{-cl } (A^c) \) and \(A^c \) is a \((\tau_i, \tau_j)\)-g-m, closed set. By the Theorem 2.13 \(B^c \) is a \((\tau_i, \tau_j)\)-g-m, closed set. Thus by the Definition 2.22 \(B \) is a \((\tau_i, \tau_j)\)-g-m, open set in \((X; \tau_i, \tau_j)\).

Theorem 2.31. Let i, j ∈ \{1, 2\} be fixed integers. If a set \(A \) is any \((\tau_i, \tau_j)\)-g-m, open set in a bitopological space \((X; \tau_i, \tau_j)\), then \(O = X \) whenever \(O \) is an \(\tau_i \)-open set and \(\tau_j \)-int \((A) \cup A^c \subseteq O \).

Proof: Let \(A \) be any \((\tau_i, \tau_j)\)-g-m, open set in \((X; \tau_i, \tau_j)\) and \(O \) be an \(\tau_i \)-open set such that \(\tau_j \)-int \((A) \cup A^c \subseteq O \). Then \(A^c \) is a \((\tau_i, \tau_j)\)-g-m, closed set and \(O^c \) is a \(\tau_j \)-closed set such that \(O^c \subseteq [\tau_j \text{-int } (A) \cup A^c] = (\tau_i \text{-int } A^c) \cap (A^c)^c = \tau_j \text{-cl } (A^c) - A^c \). Since \(A^c \) is a \((\tau_i, \tau_j)\)-g-m, closed set and \(O^c \) is a \(\tau_j \)-closed set, by the Theorem 2.13 \(\tau_j \text{-cl } (A^c) - A^c \) contains no nonempty closed subset, which implies \(O^c = \emptyset \). Hence \(O = X \).

Remark 2.32. Converse of the Theorem 2.32 need not be true.

Example 2.33. In Example 2.26 let \(A = \{a, c\} \). The only \(\tau_i \)-open set containing \(\tau_j \)-int \((A) \cup A^c \) is \(X \), but \(A \) is not a \((\tau_i, \tau_j)\)-g-m, open set.

Theorem 2.34. Let i, j ∈ \{1, 2\} be fixed integers. If \(A \subseteq Y \subseteq X \) and \(A \) is a \((\tau_i, \tau_j)\)-g-m, open set in a bitopological space \((X; \tau_i, \tau_j)\), then \(A \) is a \((\tau_i, \tau_j)\)-g-m, open set relative to \(Y \).

Proof: Let \(A^c \subseteq Y \cap O \) such that \(Y \cap O \) is \(\tau_i,Y \) minimal open set and \(O \) is \(\tau_i \)-minimal open set in \((X; \tau_i, \tau_j)\). Then \(A^c \subseteq O \). By hypothesis \(A^c \) is a \((\tau_i, \tau_j)\)-g-m, closed set. Therefore \(\tau_j\text{-cl } (A^c) \subseteq O \cap Y \cap \tau_j\text{-cl } (A^c) \subseteq Y \cap O \). Hence \(A^c \) is \((\tau_i, \tau_j)\)-g-m, closed relative to \(Y \) which implies \(A \) is \((\tau_i, \tau_j)\)-g-m, open relative to \(Y \).

Theorem 2.35. Let i, j ∈ \{1, 2\} be fixed integers. If \(A \subseteq B \subseteq X \) and \(A \) is \((\tau_i, \tau_j)\)-g-m, open relative to \(B \) and \(B \) is \((\tau_i, \tau_j)\)-g-m, open set in \((X; \tau_i, \tau_j)\), then \(A \) is \((\tau_i, \tau_j)\)-g-m, open relative to \(Y \).

Proof: From [1] it is followed that \(A \) is \((\tau_i, \tau_j)\)-g-m, open relative to \(Y \).

REFERENCES