All the Solutions of the Diophantine Equation \(p^3 + q^2 = z^3 \)

Nechemia Burshtein

117 Arlozorov Street, Tel Aviv 6209814, Israel
Email: anb17@netvision.net.il

Received 9 August 2017; accepted 22 August 2017

Abstract. In this paper, it is established that the title equation has exactly four solutions, all of which are exhibited.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

In the huge field of Diophantine equations, no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The literature contains a very large number of articles on non-linear such individual equations involving primes and powers of all kinds. Among them are for example [1, 3, 4, 5, 6, 9, 11, 13]. The title equation stems from \(p^3 + q^2 = z^3 \).

In this paper, the values \(x, y \), are fixed positive integers. Our main objective revolves around the existence and the number of solutions of the equation \(p^3 + q^2 = z^3 \).

2. The main result

In this section, we determine all the solutions of the equation \(p^3 + q^2 = z^3 \), where \(p, q, z \), and all other values represent positive integers. This is done in Theorem 2.1.

Theorem 2.1. Suppose that \(p \) is prime and \(q > 1 \). Then the equation

\[
p^3 + q^2 = z^3
\]

has exactly four solutions in all of which \(p = 7 \). In one solution \(q \) is prime, and in all other solutions \(q \) is composite.

Proof: From (1) we obtain

\[
q^2 = z^3 - p^3 = (z - p)(p^2 + pz + z^2).
\]

Denote \(z - p = T \) where \(T \geq 1 \). Substituting \(z = p + T \) into (2) results in

\[
q^2 = T(3p^2 + 3pT + T^2).
\]

We distinguish two cases for which equality (3) may be satisfied, namely: (i) When \(T > 1 \) and \(3p^2 + 3pT + T^2 \) are squares simultaneously. (ii) When \(T \geq 1 \) and \(3p^2 + 3pT + T^2 \) are not necessarily squares simultaneously.

We will now show that case (i) is actually impossible.
Nechemia Burshtein

(i) Suppose that \(T > 1 \) and \(3p^2 + 3pT + T^2 \) are squares simultaneously. Denote \(T = U^2 \) and \(3p^2 + 3pT + T^2 = V^2 \). Then
\[
3p^2 + 3pT + T^2 = 3p^2 + 3pU^2 + (U^2)^2 = V^2
\]
or
\[
3p(p + U^2) = V^2 - (U^2)^2 = (V - U^2)(V + U^2).
\] (4)

It follows from (4) that \(p \) divides at least one of the values \(V - U^2 \), \(V + U^2 \). We will now show that this statement does not hold.

If \(p \mid (V - U^2) \), denote \(pR = V - U^2 \) or \(V = pR + U^2 \). Then from (4) we have
\[
3p(p + U^2) = p^2R^2 + 2pRU^2 + (U^2)^2 - (U^2)^2
\]
or
\[
p^2(R^2 - 3) + pU^2(2R - 3) = 0
\]
which is impossible for all values \(R \). Hence \(p \nmid (V - U^2) \).

If \(p \mid (V + U^2) \), denote \(pS = V + U^2 \) or \(V = pS - U^2 \). From (4) we obtain
\[
p^2(S^2 - 3) - pU^2(2S + 3) = 0
\]
implying
\[
p = U^2, \quad 2S + 3
\]
The divisors of \(p \) are \(1 \) and \(p \), and since \(T > 1 \) therefore \(T = U^2 > 1 \) or \(U > 1 \).

Then from (5) it follows that: either (a) \(\dfrac{U^2}{S^2 - 3} = 1 \) and \(2S + 3 = p \), or (b) \(U = p \)
and \(\dfrac{U(2S + 3)}{S^2 - 3} = \dfrac{p(2S + 3)}{S^2 - 3} = 1 \). If (a), then \(\dfrac{U^2}{S^2 - 3} = 1 \) or \(U^2 = S^2 - 3 \). But \(S^2 - U^2 = 3 \) has the only solution \(U = 1 \) and \(S = 2 \) which is impossible. If (b), then
\[
\dfrac{p(2S + 3)}{S^2 - 3} = 1 \quad \text{or} \quad p = \dfrac{S^2 - 3}{2S + 3}
\]
which is impossible since \(\dfrac{S^2 - 3}{2S + 3} \) is never an integer.

Thus \(p \nmid (V + U^2) \), and case (i) is complete.

(ii) Suppose that \(T \geq 1 \) and \(3p^2 + 3pT + T^2 \) are not necessarily squares simultaneously. In equality (3) set \(3p^2 + 3pT + T^2 = TA^2 \) as
\[
3p^2 + 3pT + T^2 = TA^2
\] (6)
for some value \(A \) which guarantees that equality (3) is indeed a square \(q^2 = (TA)^2 \).

Then, from (6) it follows that \(T \mid 3p^2 \). The value \(T \) may assume all possible divisors of \(3p^2 \), namely: \(T = 1 \), \(T = 3 \), \(T = p \), \(T = 3p \), \(T = p^2 \), \(T = 3p^2 \). The six cases are considered separately.

The case \(T = 1 \). Substituting \(T = 1 \) in (3) yields
\[
q^2 = 3p^2 + 3p + 1,
\] (7)
from which
\[
q^2 - 1 = (q - 1)(q + 1) = 3p(p + 1).
\]
Therefore, either \(p \mid (q - 1) \) or \(p \mid (q + 1) \). Note that \(p \neq 2 \).

If \(p \mid (q - 1) \), denote \(Bp = q - 1 \) where \(B \geq 1 \). Substituting \(q = Bp + 1 \) into (7) results in
All the Solutions of the Diophantine Equation \(p^3 + q^2 = z^3 \)

\[B^2 p^2 + 2Bp + 1 = 3p^2 + 3p + 1, \]

and after simplifications implies that \(p = \frac{3 - 2B}{B^2 - 3}. \) The term \(\frac{3 - 2B}{B^2 - 3} \) is negative for all values \(B \geq 1, \) and therefore is impossible. Thus, \(p \not| (q - 1) \) and \(p \not| (q + 1). \)

If \(p \not| (q + 1), \) denote \(Cp = q + 1 \) where \(C \geq 1. \) Then \(q = Cp - 1, \) and from (7) it follows that
\[q^2 = (Cp - 1)^2 = C^2p^2 - 2Cp + 1 = 3p^2 + 3p + 1. \] (8)

After simplifications of (8), one obtains that
\[p = \frac{2C + 3}{C^2 - 3}. \]

Evidently, the only value that \(C \) may assume is \(C = 2. \) Hence, \(C = 2 \) yields
\[\frac{2 \cdot 2 + 3}{2^2 - 3} = 7 = p. \] The values \(p = 7, q = 2p - 1 = 13 \) prime, and \(z = p + 1 = 8 \) form a solution of equation (1).

The case \(T = 1 \) is complete.

The case \(T = 3. \) From (3) we obtain \(q^2 = 3(3p^2 + 9p + 9) \) or \(q^2 = 3^2(p^2 + 3p + 3) \)
implying that \(p^2 + 3p + 3 \) must equal a square, say \(A^2. \) If \(p^2 + 3p + 3 = A^2, \) then
\[A^2 - p^2 = (A - p)(A + p) = 3(p + 1). \] (9)

We now show that \(3 \not| (A - p) \) and \(3 \not| (A + p) \) implying that \(T \neq 3. \) If \(3 \not| (A - p), \)
denote \(3D = A - p \) where \(D \geq 1. \) Hence, from (9) \(3D(A + p) = 3(p + 1) \) or \(D(A + p) = p + 1. \) Since \(A > p, \) this equality is impossible and \(3 \not| (A - p). \) If \(3 \not| (A + p) \) then \(3E = A + p. \) We have from (9) that \((3E - 2p)3E = 3(p + 1) \) or \((3E - 2p)E = p + 1. \)

Thus, \(p(2E + 1) = 3E^2 - 1, \) and \(p = \frac{3E^2 - 1}{2E + 1}. \) But, this fraction never equals an integer, and therefore it follows that \(3 \not| (A + p). \) Hence \(T \neq 3. \)

As an immediate consequence, it follows that for every prime \(p, \) \(p^2 + 3p + 3 \) is never equal to a square.

The case \(T = p. \) With \(T = p \) in (3), we obtain \(q^2 = p(7p^2) = 7p^3 \) implying that \(p = 7 \) and \(q = 7 \). Hence, the values \(p = 7, q = 7 \) and \(z = 2p = 14 \) yield a solution of equation (1).

The case \(T = 3p. \) When \(T = 3p \) in (3), then \(q^2 = 3p\cdot21p^2 = 3^2\cdot7p^3. \) Thus, \(p = 7 \) and \(q^2 = 3^2p^4 = 3^2\cdot7^2 \) \(\text{The values } p = 7, q = 3\cdot7^2 \) and \(z = 4p = 28 \) form a solution of equation (1).

The case \(T = p^2. \) From (3) we have
\[q^2 = p^4(3p^2 + 3p + 3) = p^4(3 + 3p + p^2). \]

It now follows that the value \(p^2 + 3p + 3 \) must equal a square say \(M^2, \) so that \(q^2 = (p^2M)^2. \) But, \(p^2 + 3p + 3 \neq M^2 \) as was shown in the case \(T = 3. \) Thus \(T \neq p^2. \)

The case \(T = 3p^2. \) From (3) we obtain
\[q^2 = 3p^2(3p^2 + 9p + 9p^2) = 9p^4(1 + 3p + 3p^2). \]

Therefore, the value \(3p^2 + 3p + 1 \) must be equal to a square, say \(N^2, \) in order that \(q^2 = (3p^2N)^2. \) The value \(3p^2 + 3p + 1 \) appears in equality (7) of the case \(T = 1, \) and is indeed equal to a square only when \(p = 7 \) for which a solution of equation (1) exists.
Nechemia Burshtein

Hence, the values \(p = 7, q = 3p^2(3p^2 + 3p + 1)^{1/2} = 3 \cdot 7 \cdot 13 \) and \(z = p + 3p^2 = p(3p+1) = 2 \cdot 7 \cdot 11 \) yield a solution to equation (1).

The four solutions of equation (1) have been established and exhibited.

This concludes the proof of Theorem 2.1. □

As a consequence of Theorem 2.1 we have:

Remark 2.1. The unique solution of the square \(K^2 = 3p^2 + 3pT + T^2 \) consists of the value \(T = 1 \) and the primes \(p = 7 \) and \(K = 13 \).

As a summary, and for the convenience of the readers, we now demonstrate the four solutions in the order of their occurrence.

Solution 1. \(7^3 + 13^3 = (2 \cdot 3)^3 \).

Solution 2. \(7^3 + (7)^3 = (2 \cdot 7)^3 \).

Solution 3. \(7^3 + (3 \cdot 7)^2 = (2 \cdot 7)^3 \).

Solution 4. \(7^3 + (3 \cdot 7^2 \cdot 13)^2 = (2 \cdot 7 \cdot 11)^3 \).

3. Conclusion

We conclude by giving a glimpse on the equation \(p^3 + q^m = z^3 \) when \(m = 1, 2 \) and 3.

It is easily seen that infinitely many solutions exist for the equation \(p^3 + q^1 = z^3 \) when \(p \) is prime and \(q \) is prime/composite. Few such examples are:

\[
2^3 + 19 = 3^3, \quad 3^3 + 37 = 4^3, \quad 5^3 + 91 = 6^3, \quad 7^3 + 386 = 9^3.
\]

In this paper, the equation \(p^3 + q^2 = z^3 \) yields quite surprisingly only four solutions in all of which \(p = 7 \) and in only one of them \(q \) is prime.

In 1637, Fermat (1601 – 1665) stated that the Diophantine equation \(x^n + y^n = z^n \), with integral \(n > 2 \), has no solutions in positive integers \(x, y, z \). This is known as Fermat's "Last Theorem". In 1995, 358 years later, the validity of the Theorem was established and published by A. Wiles. Thus, the equation \(p^3 + q^3 = z^3 \) has no solutions in positive integers \(p, q, z \).

REFERENCES

All the Solutions of the Diophantine Equation \(p^3 + q^2 = z^3 \)

