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1. Introduction 
Classical   measure theory [3]  is studied  based on additive property. But, in many real 
time applications like  fuzzy logic [2], artificial intelligence, decision making, data 
mining and re-identification problem etc.  require the non-additive  measure.  In this 
situation, fuzzy measure was introduced by  Sugeno [4]  which is a non additive measure. 
Fuzzy measure was  discussed by several  authors [4, 6, 7, 8, 9,10,12]  in different 
manner. 

The fuzziness in the concept of fuzzy measure introduced by Sugeno is 
abandoning the additive property.  However  no membership  was assigned for the 
measure as in the fuzzy set [5, 9,11]. Fuzzy measure, defined in [1],  was studied with  
the membership value.  
 In this paper, we generalize the definition of fuzzy measure which is defined in 
[1] with underlying continuity conditions and we give some examples.  
 
 2. Fuzzy relation  and  fuzzy measure 
 It is clear  that   if BAR →:   is a relation   then  R   is  a subset of  A × B  where   A  

and B  are any two sets. Hence R can be  fuzzified  like fuzzification of sets. 
 
Definition 2.1. (Fuzzy relation) 
If A  and B  are any two sets,  then a relation  BAR →:  is said to be a fuzzy  relation   
if  
             (i) D(R ) = A, where  D(R ) is the domain of  R  and  

(ii) there exists a membership function  ]1,0[: →RRµ    
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Example 2.2. Let { } { }cbBA ,,3,2,1 ==   and  the relation R  be given by   

{ }),3(),,2(),,2(),,1( cbaaR =  

The membership function  ]1,0[: →RRµ    is defined as  

7.0)],3[(,3.0)],2[(,1)],2[()],1[( ==== cbaa RRRR µµµµ  
Then  R  is  a fuzzy relation . 

 
Remarks 2.3. 

1. For our convenience  )],[( yxRµ   is simply denotes by ),( yxRµ . 

2. If ,),( Ryx ∈   we write it as .)( yxR =  

3. By ,),( ayxR =µ we mean that a  is the membership value in [ 0, 1 ] of the 

case .)( yxR = That is ayxR == ))((µ
 

is simply represented  by 

.),( ayxR =µ  

 
Definition 2.4. (Fuzzy measure)   Let X be a non empty  set, Ω   be a  non empty class  
of  subsets of  X and ( X, Ω ) be a measurable space. A fuzzy relation  ],0[: ∞→Ωm   
is said to be a  fuzzy measure,  if the following conditions are satisfied 

(i) ( ) 10, =φµ m  

(ii)  For any two sets A and B in Ω ,   BA ⊆  and  A is a nonempty set implies     

                  
yBmxAm

yx
==

≤
)()(

supsup       and      














≤
















== yBm
m

xAm
m yBxA

)()(

sup,sup, µµ , 

(iii)  For a sequence   of  non empty sets  { } ,Ω⊂nA  ......4321 ⊆⊆⊆⊆ AAAA   

       and Ω∈
∞

=
∪

1n
nA   ⇒  

y
n

nAm
xAmn

yx
n

=












 ∞

=

=
=









∪

1

)(
supsuplim

  

and  



















=
















=












 ∞

=

∞

==
y

n
nAm

n
nm

xAm
nm

n
yAxA

n
∪

∪

1

1)(

sup,sup,lim µµ  

 

(iv) For a sequence of   non empty sets  { } Ω⊂nA , 
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First  we discuss some examples [4]  in which  the fuzzy relation m is a fuzzy measure. 
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In the following examples, )(XP  denotes  the power set of  a non empty set X. 
 
Example 2.5. Let { }nX ,...3,2,1= , n is a finite  value,  and   )(XP=Ω .  
  Let  the fuzzy relation   ],0[: ∞→Ωm  be  defined as  

      [ ]{ }Sx/x)S(mSxxSm ,0isthatiff)( ∈=≤=  

  and  the membership function    ]1,0[: →mmµ
 
be  defined as  

 

φµ ≠≤= AforSx
S

x
xSm ,,),(

    

and 

   

1)0,( =φµm  

 In particular  case , when n = 3, { }3,2,1=X , and  { }8,7,6,5,4,3,2,1)( SSSSSSSSXP ==Ω
,   where 

{ } { } { } { },2,1,3,2,1, 54321 ===== SSSSS φ  

{ } { } XSSS === 876 ,3,2,3,1  

Then  the values of m   and its  corresponding  membership values for  each set in Ω  are  

,0)( 1 =Sm 1)0,( 1 =Smµ  

[ ]{ }1,0/)()()( 432 ∈=== xxSmSmSm   

1if),(),(),( 432 ≤=== xxxSxSxS mmm µµµ  

[ ]{ }2,0/)()()( 765 ∈=== xxSmSmSm    

2if
2

),(),(),( 765 ≤=== x
x

xSxSxS mmm µµµ  

[ ]{ },3,0/)( 8 ∈= xxSm  3
3

),( 8 ≤= xif
x

xSmµ  

The conditions in the definition   can be verified  below   

,0)( 1 =Sm                                       1)0,( 1 =Smµ  
hence condition ( i ) is true  
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In general, it can be verified  that  

for   i =  3,    j =  5, 7     and      for  i = 4,    j =  6, 7  
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For  i =  5, 6, 7 
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Hence condition (ii) is true. 
 
Now, consider the  sequence of  non empty  sets    such that    

.....54321 AAAAA ⊆⊆⊆⊆
 and ,8
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Now, consider  another the  sequence of  non empty sets   such that   
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Similarly    for   all other  possible   cases, the condition ( iii )  can be verified .  
Now , consider the  sequence of  non empty  sets    such that     
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we get the sequence  .....,1,1,1,1,1       and            
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Similarly,    for  all  other possible   cases,  the condition ( iv )  can be verified. 
 
Thus   all the conditions which have been stated   in the definition 2.4  are verified   for 
the given  fuzzy function   m and   its membership function  mµ   and  hence the given  m  

is a fuzzy measure. 
Hence   for  any   finite value of n, the m  is a fuzzy measure. 
 
 Example 2.6.  Let { }cbaX ,,= , and 

{ }87654321 ,,,,,,,)( SSSSSSSSXP ==Ω  , 

where { } { } { } { },,,,,, 54321 baScSbSaSS =====φ  

{ } { } XScbScaS === 876 ,,,,  

  Let  the fuzzy relation  ],0[: ∞→Ωm  be  defined as  
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Then  the values of m   and its  corresponding  membership values for  each set in Ω   are  
,0)( 1 =Sm         1)0,( 1 =Smµ  
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Conditions (i)  - (iv) are satisfied  for the  fuzzy relation   m and its membership function 

mµ . Hence the fuzzy relation m is a fuzzy measure.  

 

 Example 2.7. Let ,,
321

,






= aaaX  and 

{ },,,,,,,,)( 87654321 SSSSSSSSXP ==Ω   where   
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  { } { } { } { },,,,,, 2153423121 aaSaSaSaSS =====φ
 

{ } { } XSaaSaaS === 8327316 ,,,,  

 Let  the fuzzy relation   ],0[: ∞→Ωm  be  defined as  

      




∉
∈

=
,0

1
)(

0

0

i

i

Sxif

Sxif
Sm Ω∈∀ iS    and   0x   is a fixed point in   X  

and  the membership function    ]1,0[: →mmµ
 
be  defined as  
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−= Sfor
xS

xSm ,
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1),(

    

and 

   

1)0,( =φµm  

As a particular case, we take   10 ax = . 
 
Then  the values of m   and its  corresponding  membership values for  each set in Ω   are  

,0)
1

( =Sm  ,1)( 2 =Sm ,0)( 3 =Sm  ,0)( 4 =Sm  

,1)( 5 =Sm ,1)( 6 =Sm ,0)( 7 =Sm 1)( 8 =Sm                   

( ) ,10,1 =Smµ ( ) ,5.01,2 =Smµ ( ) ,00,3 =Smµ ( ) ,00,4 =Smµ
( ) ,67.01,5 =Smµ    ( ) ,67.00,6 =Smµ   ( ) ,5.00,7 =Smµ  ( ) 75.00,8 =Smµ  

Conditions (i)  - (iv) in the definition  are satisfied  for the  fuzzy relation m and its 
membership function mµ . 

In general, for any 0x  in ,X the conditions are satisfied. Hence the  fuzzy 

relation  m is a fuzzy measure.  
 
Example 2.8. Let   { }nX ,...3,2,1= , and )( XP=Ω .   Let  the fuzzy relation   

],0[: ∞→Ωm  be  defined as   0)(andfor,max)( =≠= φφ mSSSm  

and  the membership function    ]1,0[: →mmµ
 
be  defined as  

           

φµ ≠−= Afor
x

xSm ,
1

1),(

    

and 

   

1)0,( =φµm  

In particular  case , when n = 3, { }3,2,1=X , and  
{ },,,,,,,,)( 87654321 SSSSSSSSXP ==Ω

 
where { } { } { } { },2,1,3,2,1, 54321 ===== SSSSS φ  

{ } { } XSSS === 876 ,3,2,3,1  

Then  the values of m   and its  corresponding  membership values for  each set in Ω   are  

,0)( 1 =Sm   ,1)( 2 =Sm   ,2)( 3 =Sm ,3)( 4 =Sm  ,2)( 5 =Sm ,3)( 6 =Sm  
 

,3)( 7 =Sm  3)( 8 =Sm    
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 ,1)0,( 1 =Smµ
  

,0)1,( 2 =Smµ
 

,5.0)2,( 3 =Smµ     

,7.0)3,( 4 =Smµ ,5.0)2,( 5 =Smµ                                              

,7.0)3,( 6 =S
m

µ ,7.0)3,( 7 =Smµ
 

7.0)3,( 8 =Smµ  

Conditions (i)  - (iv) in the definition  are satisfied  for the fuzzy relation m and its 
membership function mµ . 

In general, for any value finite of n, the conditions are satisfied. Hence the    
fuzzy relation  m is a fuzzy measure.  
 
Remark: In the first two examples, measure takes  values from  an interval and the  next 
two examples measure is a non negative finite real number. In general, fuzzy measure 
need not be an interval.    
 
Secondly,  we discuss some examples [4]  which are not a fuzzy measure. 
 
Example 2.9. Let   { } ( ){ }0000 ,/,,,......3,2,1 XyxyxXXXX ∈=×==   and,  

Ω  =  )(XP .    
Let  the fuzzy relation   ],0[: ∞→Ωm  be  defined as  

      )(andfor,Pr)( XPSSSojSm ∈∀≠= φ
 

( ){ } 0)(and,/Prwhere =∈= φmSyxxSoj  

and  the membership function    ]1,0[: →mmµ
 
be  defined as  
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Then  m  satisfies  the conditions (i), (ii) and (iii)  but it does  not satisfy the condition 
(iv).  
For if we take  { } { },....2,1,1 ++×= nnnS n  , then 
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 Hence  the  fuzzy relation m is  not a fuzzy 

measure.  

Example 2.10.  Let { },,, 321 aaaX =  and  

{ },,,,,,,,)( 87654321 SSSSSSSSXP ==Ω   where   
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{ } { } { } { } { }
{ } XSaaS

aaSaaSaSaSaSS

==
======

8327

3162153423121

,,

,,,,,,,,φ

 

  Let  the fuzzy relation   ],0[: ∞→Ωm  be  defined as  
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i
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Sxif
Sm Ω∈∀ iS     and   0x   is a fixed point in   X  

       and  the membership function    ]1,0[: →mmµ
 
be  defined as  

           

( )2
1

1
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Sx
xSm

−+
=µ

   

Ω∈∀ iS  

As a particular case, we take   0x  =  1a  

Then  the values of m   and its  corresponding  membership values for  each set in Ω   are  

,0)( 1 =Sm  ,1)( 2 =Sm
 
  ,0)( 3 =Sm

 
  ,0)( 4 =Sm  ,1)( 5 =Sm    ,1)( 6 =Sm  

,0)( 7 =Sm   1)( 8 =Sm        

 ,1)0,( 1 =Smµ  ,1)1,( 2 =Smµ ,5.0)0,( 3 =Smµ  

,5.0)0,( 4 =Smµ ,1)1,( 5 =Smµ 1)1,( 6 =Smµ , ,2.0)0,( 7 =Smµ
5.0)1,( 8 =Smµ  

This is not a fuzzy measure. For if  
2.0)(5.0)(but0)()( 737373 =>===⇒⊂ SSSmSmSS mm µµ .   

 
3. Conclusion    
In  this  paper, we have attempted to give   the definition of fuzzy measure, using the 
fuzzy set approach    and  we cited some  examples  in which  m is fuzzy measure and  
some  examples  in which m  is not  a fuzzy measure . A   detailed   investigation  on the 
structure of fuzzy measures and fuzzy integrals can be then made using the present 
definition.  
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