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Abstract. The traditional single objective mean variance rojation model fails to
satisfy the investors with multiple investment abijges. So multi-objective portfolio
optimization model is considered in this paperncgithis will help investors to achieve
highest expected return among the different firgnmioducts of the capital market and
to fulfill the expected return objectives simultansly. Fuzzy Non-Linear Programming
(FNLP) and Fuzzy Additive Goal Programming (FAG&)hniques are used to solve this
multi-objective model. Since it will fulfill the waed aspiration level of the investors
concerning return and risk objectives. And finadlglution procedure is illustrated by
numerical examples.
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1. Introduction

In financial management one of the most importamics is portfolio management.
Basically portfolio management gives the directiorobtain a portfolio that will satisfy

an investor concerning his risk and return. Thennzam of portfolio management is to
choose the best amalgamation of assets that valligee the highest expected return
while maintaining acceptable level of risk simuéansly.

In portfolio optimization an investor always wantdchieve maximum portfolio
return, while ensuring an acceptable level of eskhe same time. Investor will have to
manage the risk-return trade off for their investtaesince risk will reimburse the return.
That is why single optimization portfolio is not @ppriate. So while determining
optimal portfolio one will have to consider thekrieturn preferences of the investor.

The pioneer model in the field of portfolio maratwent is the Mean-Variance
(MV) model, proposed by Markowitz [16] in 1952. lne basic mean-variance model of
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portfolio framework, Markowitz trade-off between pected return and risk of the
portfolio , each of them represented by the meahnisibrical performances i.e. mean of
return of an asset and the dispersion of the retsimisk respectively.

Over the last few decades the pioneer model prapdse Markowitz,
mathematical programming techniques have becomesaary tools to support financial
decision making process and applied a lot in rifal $ituation. There are several
mathematical tools used in general to find the Isestition in portfolio optimization.
Such as Forecasting, Simulation, Statistical Molthematical programming models.
Among these models mathematical programming idbése option to the decision maker
to find the optimal solution.

Also several exact method based techniques had applied to solve the
portfolio optimization models, such as integer pamgming method [1], goal
programming method [2], lexicographic goal prograngrapproach [3] etc. Some meta-
heuristics based approaches are also used sucimakted annealing [4], genetic
algorithm [5], particle swarm optimization [6], aablony optimization [7]. In [20]
authors had discussed about some advanced opimnizathniques.

But in practice in order to take best portfolio ideans, decision maker will have
to take help of some vaguely define financial patars such asesturn more than 20%,
risk lower than 10% etc. Under such vague expression it is difficult donstruct
satisfactory portfolios using crisp or interval noens. In such a situation decision maker
has to take help of fuzzy set theory in order tomidate the models of portfolio
selection. Not only the uncertainty and the vagasrege controlled by fuzzy set theory,
but also help decision maker to take flexible deaisby considering the investors’
preferences.

The concept of fuzzy decision theory was develdpe8ellmann and Zadeh [8]
based on the idea of fuzzy sets introduced by Zadel965 [9]. Also some authors
[10,11,12,13,14] had already used the fuzzy frarekwo select the efficient portfolio
using mean-variance model. Wang et all [15] hadl fsezy decision theory in single
objective portfolio optimization model.

In [22] authors had used a fuzzy programming templmi to solve his
transportation model. Also Jebaseeli and Dhayabaaanpresented a comperative study
on fully time-cost trade off.

In this paper we consider a multi-objective portfaptimization model based on
the framework introduced by Markowitz. The two daljees are maximization of
portfolio return and minimization of portfolio riskkhe model is basically a quadratic
programming problem. Then in order to accommodgipraimate linguistic type
information in portfolio selection models we hawken the help of fuzzy framework
considering the vague aspiration level of invesforsrisk and return, two fuzzy multi-
objective program technigues namely Fuzzy Non Lifragramming technique(FNLP)
and Fuzzy Additive Goal Programming technique (FA@R used to solve this models.
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Numerical examples are given to illustrate the [gois and then the result will be
compared.

2. Mathematical model

The problem of portfolio optimization is to alloeatapital over a number of available
assets. In portfolio optimization investors hopeathieve maximum portfolio return as
well as minimum portfolio risk. Because return @npensated by using risk, it is crucial
for the investors to balance the risk return traffidor their investments.

So bi-objective Mean- Variance (MV) model for potif optimization considered in this
paper based on the mean — variance framework pedpby Markowitz [16] is as
follows:

Maximize f(x) = XL 1ix; 1)(

Minimize g(x) = ¥} X7, 0x;%;
Subject to:

n

2)(1' = 1,

i=1

where,

x; is the proportion of the total fund invested ihiasset, foi = 1,2, ... ........,n .
R;is the random rate of return on the ith assetj fer,2, ... ... .....,n.

r; is the expected rate of return on the ith asset,+ 1,2, ... ... ....., n.

o;j is the covariance between ith and jth asset reterR; andr; ,

fori,j =12, .cccouc.., .

al-z is the variance of ith asset, fo= 1,2, ..........., n.

3. Mathematical analysis
In this section we will discuss about fuzzy prognaimg techniques considered in this
paper to solve a Multi-Objective Non-Linear Progmaimg (MONLP) problem.

3.1. Multi-objective non linear programming (M ONL P) problem
A Multi-Objective Non-Linear Programming (MONLP) mde considered in vector
minimization problem form as follow:

Minimize w(x) = [W1(x), W3 (X), cev eer ee vor evr eer e, Wi ()] 7 (2)
subjecttox € X = {x ER™Mvj(x) <or=or=b;jforj=1,...... ,M; X = 0},
and l; <x; <y (i=12,.. ... ,n)
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Fuzzy programming technique is an efficient methiod solve a multi-objective
programming problem, which was initially showedZzisnmermann [17].

3.2. Fuzzy programming techniquesfor a MONLP
The following steps are to be followed to solve @NLP (2).

Step 1. Solve the MONLP as a single objective programngrgblem considering each
of the objectives at a time, ignoring the otherse Bolutions so obtained are known as
ideal solutions.

Step 2: To find the corresponding values for each of thgedives at each solutions
derived from previous step. With the values ofdddjectives at each ideal solution, and
the pay-off matrix can be formulated as follows:

wy (x) wa(x) ... Wi ()

WS wed) e W) |
X V\{(Xz) V\é(Xz) ..... V\{<(X2)

W) W) e WO,

Here x%,x% ....ou....,xfare the ideal solutions of the objectives
wq (%), W (X), v ven o , Wi(x) respectively.

SoU, = max{w, (x1), w, (x2), ... .., w,(x¥)},

And

Ly = wi(x")
Here L,.and U,are lower and upper bounds of titl objective functiorw,.(x)forr =
1,.., k.

Step 3: Using aspiration levels of each objective of the M® (2) may be written as
follows:
Findx so as to satisfy
w,(x)SL, (=12 ...... k), xeX 3
Here objective functions of (2) are considered @y constraints. This type of fuzzy
constraints can be quantified choosing a correspgrmdembership function
0 if w2 Ur(x)
ﬂr(Wr(x)) = {dr(x) if Ly(x) < wyp(x) < Up(x) (4)
1 if w(x) < L(x)
Forr=1,2,...... Jk
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Hered, (x) is a strictly monotone decreasing function witspect tow,.(x) .
Having elicited the membership functions (as i) gXw,(x)) for r =12, ....,k, a
general aggregation of the form

up(x) = Hﬁ(ﬂl(WI(X)),Hz(Wz(X)),, ......... ,uk(wk(x))) is introduced.

So a fuzzy multi-objective decision making probleam be defined as
Maximize up(x) (5)
subject tox € X
Then fuzzy decision (By Bellman and Zadeh) [8] loa®g®m minimum operator (By
Zimmermann) [16] the problem (3) will take the form
Maximize A
subject to ur(wr(x)) >A,forr=12,..,k (6)
x€EXand0<A<1
This is known as Fuzzy Non-Linear Programming peab{FNLP)
And fuzzy decision based on convex operator (Tiwagl) [18] the problem (3) will take
the form
Maximize ¥*_; ,ur(wr(x)) (7
Subjectto 0< ur(wr(x)) <1,forr=1.2, .., kandx € X
This is known as Fuzzy Additive Goal Programminghpem (FAGP)

Step 4: Solve (6) and (7) to get the Pareto Optimal sohsi

3.3. Weighted fuzzy non-linear programming (WFNLP)
Concerning the relative importance of each of thgedaive functionsw,.(x), decision
maker prefer positive weightg; for r = 1,2, ..., k. These weights in normalized form
will be considered by taking¥_, a; = 1.
Then considering normalized weights, the fuzzy hioear programming problem (6)
becomes

Maximize A (8)

subject to aryr(wr(x)) > forr=12, ..,k

xEXand 0<A1<1
k

where Z ai=1

r=1
3.4. Weighted fuzzy additive goal programming (WFAGP)
Concerning the relative importance of each of thgedaive functionsw,.(x), decision
maker prefer positive weightg; for r = 1,2, ..., k. These weights in normalized form

will be considered by taking¥_, a; = 1.
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Then considering normalized weights, the fuzzy hoear programming problem (7)
becomes

Maximize Y¥_; arp,(wy(x)) 9)
Subjectto 0< ur(wr(x)) <1,forr=1.2, ..,k
x€X
k
where Z ai=1
r=1

Few basic definitions of Pareto optimal solutiores presented below.

Definition (Complete optimal Solution)

x"is said to be a complete solution to the MONLPi{2&nd only if there exists* € X
such thaw, (x*) < w,.(x) for r = 1,2, ...,k and for allx € X.

But if the objective functions of a multi-objectipeoblems are conflicting in nature, then
complete solution does not exist in general andhsocondition of Pareto optimality
concept is need to be considered and it is defasefdllows.

Definition (Par eto optimal Solution)

x"is said to be a Pareto solution to the MONLP (2aritl only if there does not exist
anotherx € X such thatw, (x*) < w,.(x) for r=1.2,...,k andw;(x) # w;(x") for at
leastong,j € {1,2, ..., k}.

4. Fuzzy programming technique to solve multi-objective mean-variance model
(MOMVOM)
According to Vector Minimization Problem (VMP) theodel (1) can be formulated as

Minimize f(x) = — Y, 1iX; (10)
n n
Minimize g(x) = Z Z 01X X;
i= j=1
pect to:
n
EXL' = 1,
i=1
Xi >0 B
i=12 i e, M
To solve VMP (10) the pay-off matrix is formulates follows:
f(x g(x)
xt JHED) g(x")
x? f(x?) g7 (x%)
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Now the upper bound$,, U, and lower bounds,, L, are identified, wheré; < f(x) <
U, andL, < g(x) < U,.

For simplicity we have considered linear membershigetion for the objective functions
f(x) andg(x) defined as follows

0 if f) S Ly
u(f@) = { POl < fm <y,
1 1
1 if f(x)=U;
0 if glx) =2 U,
U, —
(@) = ij,fgfx) if Ly < g(x) S U
2 2
1 if g(x) =L,

According to step 3, having elicited the above mership functions crisp non-linear
problem of (10) is formulated as follows:

Based on FNLP
Maximize A (12)
subject to f(x) =L, + AU, —Lq)
g(x) Uy — AUz — Ly)
n

in = 1,

i=1
0<1<1
X =20,i=12, . ccieiits i,

Based on weighted FNLP (WFNLP)
Maximize A (12)

A
subject to f(x) =1L, +a—(U1 - L)
1

A
gx) < U, —— Uz — Ly)
az

n

EXL' = 1,

i=1

0<a<1
0(1 + az = 1
X 20,i=12, i, M
Based on FAGP
Maximize L2~ 4 U2=9) 13)
Ui—Lq Uy—L,
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f(x) Ly <1
U_Ll
Os—(x)s1
—L

U 2
n
in = 1,

=1
X =20,i=12, .o,
Based on weighted FAGP (WFAGP)

Maximize a, (f( x)- Ll) (Uz_g(x) ) (14)
<

L,
f (x) —
U, — L1
0< —(x) <
U, —L,
rtxi=lLata, =1
x;=0,i=12,. e e, T
Solving (11), (12), (13), (14) we will get the lereptlmal solution to the corresponding
problem.

1

5. Numerical illustration
The model is validated using a data set of 10 rantglaelected assets taken from [19]
which was actually taken from National Stock Exa@(NSE).

Company 1 2 3 4 5 b 7 8 9 10 1 12
ABL 0072 032032 02971 0236 -0.05161 050633 -0.02516 090484 003214 045968 0227 -0.87871
AL 014433 019032 075032 0.03433 -0.33581 0247 049968 027032 -032786 031968 0.11933 -0.50903
BHL  0.08667 105613 0.05516 0.27567 -0.21839 049233 111516 057613 017143 092258 0.22367 -0.67903
CGL  -0.185%7 076774 0.16194 048633 -0.2071 047833 02571 059484 -0.02321 0.55387 0.07333 -0.11871
HHM 018233 033 013677 046533 -0.12774 0.56067 0.10839 0 014321 0.00968 -0.15767 -0.27258
HCC -0.157 061226 123548 056067 -0.71065 097333 032839 061581 0.03286 0.49935 -0.03733 -0.59452
KMB 018567 0.27806 055097 0.02733 -0.46613 0.73333 020581 0.17065 -0.05286 0.6671 0373  -0.08355
MML 037533 065903 0.1929 0.16533 -0.15226 0.8087 039097 029 01975 021839 0031 -0.06548
SL 010467 0200552 031161 043333 -03171 1104 037194 073097 003321 0.75903 0.09467 -0.44903
UNL 026367 041581 024484 01297 -0.0829 054 093258 061871 02275 06898 0.65433 0.65258

Table 1:
Now the historical return for the entire periodcismputed which is given in the table
below.
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Company Return
ABL 0.17499
ALL 0.0995
BHL 0.33979
CGL 0.23657
HHM 0.11487
HCC 0.27989
KMB 0.21578
MML 0.25928
SIL 0.26859
UNL 0.44054
Table 2:
Now the variance — Covariance matrix is computetiginen in the table below.
Company  ABL ALL BHL 6L HHM HCe KMB MML SIL UNL

ABL 0.16656 0.08967 0.12861 0.08818 0.04405 0.15995 0.06892  0.0526  0.14154 0.00366
ALL 0.08967 0.122562 0.11421 0.06378 0.02641 0.16708 0.08474 0.04011 0.10279 0.03682
BHL 0.12861 0.11421 0.25614 0.12394 0.05332 0.16096 0.08375 0.08739 0.14854 0.06449
CGL 0.08818 0.06378 0.12394 0.10279  0.0406  0.13204 0.05656 0.05247 0.10984 0.02941
HHM 0.04405 0.02641 0.05332 0.0406 0.05677 0.08892 0.03101 0.0492 0.06321 -0.01296
HCC 0.15995 0.16708 0.16096 0.13204 0.08892 0.32041 0.014144 0.0967 0.20118 0.02667
KMB 0.06892 0.08474 0.08375 0.05656 0.03101 0.14144 0.10648 0.05322 0.10631 0.04434
MML 0.0526  0.04011 0.08739 0.05247  0.492 0.0967 0.05322 0.06992 0.07734 0.01978

SIL 0.14154 0.10279 0.14854 0.10984 0.06321 0.20118 0.10631 0.07734 0.18959 0.04272
UNL 0.00366 0.03682 0.06449 0.02941 -0.01296 0.02667 0.04434 0.01978 0.04272 0.07689

Table 3:
The Pareto optimal solution for the problem (11HNLP is given in Table 4.
ABL | ALL | BHL | CGL HHM HCC | EMB MNML SIL UNL Return Risk
0 0 0 0 0.2020648 | 0 0 0.02315805 | 0 0.7747503 | 0.370524 | 0.820775403
Table 4:
The Pareto optimal solution for the problem (13FAGP is given in Table 5.
ABL |ALL|BHL|CGL| HHM |HCC|KMB| MML |SIL| UNL R;E:)m Risk g(x)
0 0 0 0] 0.2815494 0 0 0 0| 0.7184506 0.348848 | 0.797720665
Tableb5:

The Pareto optimal solution for the problem (12}apted by WFNLP for different
weights are given in the table below:

Weights ABL ALL| BHL| CGL HHM HCC [ KMB MML SIL UNL Return f(x) Risk g(x)

weight for f(x) =0.2,

. 0 0 0 0 0 0 0 | 0.1100412 | 0 | 0.8899576 0.420594 | 0.902066486
weight for g(x)=0.8
Weight for f(x) =0.4,

. 0 0 0 0 0.1012954 0 0 [0.09825821| 0 | 0.8004404 0.389738 0.830304144
weight for g(x)=0.6
weight for f(x)=0.6,

. 0.0004173( 0 0 0 0.2811498 0 0 0 0 | 0.7184266 0.348864 0.797584608
weight for g(x)=0.4,
weight for f(x)=0.8,

. 0.000266 | 0 0 0 0.4298791 0 0 0 0 | 0.5698523 0.300469 0.754761207
weight for g(x)=0.2,

Table6:
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The Pareto optimal solution for the problem (14}agted by WFAGP for different
weights are given in the Table 7.

The Pareto optimal solution for the MOMVOM BNLP and FAGP is given the
table 4 and 5 respectively, where as the solutip®W-NLP and WFAGP is given in
table 6 and 7 respectively. Here, FNLP method gmwmege return whereas FAGP method
gives less risk. So FAGP method gives better redalt risk and FNLP method gives
better results for return. After incorporation oéight from WFNLP we have, while
increasing the weight associated with the returjeative function the return obtained
gradually decreases while from WFAGP the returm@ased with greater weight to the
return objective function gradually increases. Topposite situation occurs for risk
objective function. From WFNLP we have, while irgsiang the weight associated with
the risk objective function the risk obtained irages, whereas from WFAGP while
increasing the weight associated with the risk abje function the risk obtained
decreases.

Weights ABL [ ALL|BHL| CGL HHM HCC [KMB[ MML SIL UNL Return f(x) Risk g(x)

weight for f(x) =0.2,
weight for g(x)=0.8

0 010 O (0492707 | 0 | 0 0 0 | 0.5073293 | 0.280092 | 0.750053719

Weight for f(x) =0.4,

weight for g{x)=0.6 0 010 003753811 0 | O 0

o

0.6246189 | 0.31829 0.76552987

weight for f(x)=0.6,

0 0] 0] O [0.0247162 | O 0 | 0.1553227
weight for g(x)=0.4,

o

0.8199611 | 0.404337 | 0.848536119

weight for f(x)=0.8,

0 0j]01]0 0 0 0 0 0 1 0.44054 1
weight for g(x)=0.2,

Table7:

And lastly from the above solution tablesaited by FNLP and FAGP we conclude
that in weighted FNLP method weight may be effactoectly to the objective functions
but in the weighted FAGP method weight may be ¢ftet inversely to the objective
function.

5. Conclusion

In this paper, we had considered Bi-objective Me¥ariance model for portfolio
selection. Two fuzzy non-linear programming techieig| based on FNLP and FAGP are
used to solve the model. Also weights are consitlereboth the objective functions and
then the models are solved by WFNLP and WFAGP niktRoom the result it is clear
that fuzzy non-linear programming technique is fligient technique and may be used in
any other financial optimization model.
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