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Abstract. The traditional single objective mean variance optimization model fails to 
satisfy the investors with multiple investment objectives. So multi-objective portfolio 
optimization model is considered in this paper.  Since this will help investors to achieve 
highest expected return among the different financial products of the capital market and 
to fulfill the expected return objectives simultaneously. Fuzzy Non-Linear Programming 
(FNLP) and Fuzzy Additive Goal Programming (FAGP) techniques are used to solve this 
multi-objective model. Since it will fulfill the wanted aspiration level of the investors 
concerning return and risk objectives. And finally solution procedure is illustrated by 
numerical examples. 
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1. Introduction 
In financial management one of the most important topics is portfolio management. 
Basically portfolio management gives the direction to obtain a portfolio that will satisfy 
an investor concerning his risk and return. The main aim of portfolio management is to 
choose the best amalgamation of assets that will provide the highest expected return 
while maintaining acceptable level of risk simultaneously. 

In portfolio optimization an investor always want to achieve maximum portfolio 
return, while ensuring an acceptable level of risk at the same time. Investor will have to 
manage the risk-return trade off for their investments since risk will reimburse the return. 
That is why single optimization portfolio is not appropriate. So while determining 
optimal portfolio one will have to consider the risk-return preferences of the investor. 
  The pioneer model in the field of portfolio management is the Mean-Variance 
(MV) model, proposed by Markowitz [16] in 1952. In the basic mean-variance model of 



Sahidul Islam and Rahul Chaudhury 

162 
 

portfolio framework, Markowitz trade-off between expected return and risk of the 
portfolio , each of them represented by the mean of historical performances i.e. mean of 
return of an asset and the dispersion of the return as risk respectively.   

Over the last few decades the pioneer model proposed by Markowitz, 
mathematical programming techniques have become necessary tools to support financial 
decision making process and applied a lot in real life situation. There are several 
mathematical tools used in general to find the best solution in portfolio optimization. 
Such as Forecasting, Simulation, Statistical Model, Mathematical programming models. 
Among these models mathematical programming is the best option to the decision maker 
to find the optimal solution. 

Also several exact method based techniques had been applied to solve the 
portfolio optimization models, such as integer programming method [1], goal 
programming method [2], lexicographic goal programming approach [3] etc. Some meta-
heuristics based approaches are also used such as simulated annealing [4], genetic 
algorithm [5], particle swarm optimization [6], ant colony optimization [7]. In [20] 
authors had discussed about some advanced optimization techniques. 

But in practice in order to take best portfolio decisions, decision maker will have 
to take help of some vaguely define financial parameters such as return more than 20%, 
risk lower than 10% etc. Under such vague expression it is difficult to construct 
satisfactory portfolios using crisp or interval numbers. In such a situation decision maker 
has to take help of fuzzy set theory in order to formulate the models of portfolio 
selection. Not only the uncertainty and the vagueness are controlled by fuzzy set theory, 
but also help decision maker to take flexible decision by considering the investors’ 
preferences. 

The concept of fuzzy decision theory was developed by Bellmann and Zadeh [8] 
based on the idea of fuzzy sets introduced by Zadeh in 1965 [9]. Also some authors 
[10,11,12,13,14] had already used the fuzzy frame work to select the efficient portfolio 
using mean-variance model. Wang et all [15] had used fuzzy decision theory in single 
objective portfolio optimization model.  

In [22] authors had used a fuzzy programming technique to solve his 
transportation model. Also Jebaseeli and Dhayabaran had presented a comperative study 
on fully time-cost trade off. 

In this paper we consider a multi-objective portfolio optimization model based on 
the framework introduced by Markowitz. The two objectives are maximization of 
portfolio return and minimization of portfolio risk. The model is basically a quadratic 
programming problem. Then in order to accommodate approximate linguistic type 
information in portfolio selection models we have taken the help of fuzzy framework 
considering the vague aspiration level of investors for risk and return, two fuzzy multi-
objective program techniques namely Fuzzy Non Linear Programming technique(FNLP) 
and Fuzzy Additive Goal Programming technique (FAGP) are used to solve this models. 
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Numerical examples are given to illustrate the problems and then the result will be 
compared.    
 
2. Mathematical model 
The problem of portfolio optimization is to allocate capital over a number of available 
assets. In portfolio optimization investors hope to achieve maximum portfolio return as 
well as minimum portfolio risk. Because return is compensated by using risk, it is crucial 
for the investors to balance the risk return trade off for their investments.  
So bi-objective Mean- Variance (MV) model for portfolio optimization considered in this 
paper based on the mean – variance framework proposed by Markowitz [16] is as 
follows:  
 
                                           Maximize 		
�� = ∑ ��������                                                   (1) 

   
 Minimize �
�� = ∑ ∑ ��������������  

                                                    Subject to: 

� �� = 1,�
���  

�� ≥ 0	, � = 1,2, … … … … … … … … . , ! 
where,  �� is the proportion of the total fund invested in i-th asset, for � = 1,2, … … … . . , ! . "�is the random rate of return on the ith asset, for � = 1,2, … … … . . , !. �� is the expected rate of return on the ith asset, for � = 1,2, … … … . . , !. ��� is the covariance between ith and jth asset return i.e. "� and "� ,  

for �, # = 1,2, … … … . . , !. ��$ is the variance of ith asset, for � = 1,2, … … … . . , !.  
 
3. Mathematical analysis 
In this section we will discuss about fuzzy programming techniques considered in this 
paper to solve a Multi-Objective Non-Linear Programming (MONLP) problem. 
 
3.1. Multi-objective non linear programming (MONLP) problem    
A Multi-Objective Non-Linear Programming (MONLP) may be considered in vector 
minimization problem form as follow: 
                     %�!�&�'(	)
�� = [)�
��, )$
��, … … … … … … … , )+
��]-                    (2) ./0#(12	23	� ∈ 5 = 6� ∈ "�:	8�
�� ≤ 3� = 3� ≥ 0� 		3�	# = 1, … … … , &; � ≥ 0;, <!=	>� ≤ �� ≤ /� 				
� = 1,2, … … … , !� 
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Fuzzy programming technique is an efficient method to solve a multi-objective 
programming problem, which was initially showed by Zimmermann [17].  
 
3.2. Fuzzy programming techniques for a MONLP  
The following steps are to be followed to solve a MONLP (2).  
 
Step 1: Solve the MONLP as a single objective programming problem considering each 
of the objectives at a time, ignoring the others. The solutions so obtained are known as 
ideal solutions. 
Step 2: To find the corresponding values for each of the objectives at each solutions 
derived from previous step. With the values of all objectives at each ideal solution, and 
the pay-off matrix can be formulated as follows:  
                                                                 
                                                                 )�
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��			….								)+
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Here ��, �$, … … … … … . . , �+are the ideal solutions of the objectives )�
��, )$
��, … … … , )+
?� respectively.  

So @A = max{)A
���, )A
�$�, … … , )AC�+D} ,  
And 
 FA = )A∗
�A� 
Here FAand @Aare lower and upper bounds of the rth objective function )A
��for� =1, … , H. 
 
Step 3: Using aspiration levels of each objective of the MONLP (2) may be written as 
follows:  
Find � so as to satisfy  )A
�� ≤I FA								
� = 1,2, … … … , H�, � ∈ 5                                                                     (3) 
Here objective functions of (2) are considered as fuzzy constraints. This type of fuzzy 
constraints can be quantified choosing a corresponding membership function 

             	JAC)A
��D = 		 K 0							�		)A
�� ≥ @A
��	=A
��												�		FA
�� ≤ )A
�� ≤ @A
��1						�		)A
�� ≤ FA
�� L                                (4) 

For � = 1,2, … … … , H 
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Here =A
�� is a strictly monotone decreasing function with respect to )A
�� .  

Having elicited the membership functions (as in (4)) JAC)A
��D	 for  � = 1,2, … . . , H, a 
general aggregation of the form  JMI 
�� = 	 JMI
J�C)�
��D, J$C)$
��D, , … … … , J+C)+
��D� is introduced.  

 
So a fuzzy multi-objective decision making problem can be defined as 
                                                     %<��&�'(		JMI
��                                                        (5) ./0#(12	23	� ∈ 5 
Then fuzzy decision (By Bellman and Zadeh) [8] based on minimum operator (By 
Zimmermann) [16] the problem (3) will take the form %<��&�'(	N 

                          ./0#(12	23						JAC)A
��D ≥ N , for � = 1,2, … , H                                   (6) � ∈ 5 and 0 ≤ N ≤ 1 
This is known as Fuzzy Non-Linear Programming problem (FNLP) 
And fuzzy decision based on convex operator (Tiwari et al) [18] the problem (3) will take 
the form 

                                              %<��&�'(		 ∑ JAC)A
��D+A��                                               (7) 

                            O/0#(12	23							0 ≤ JAC)A
��D ≤ 1, for � = 1,2, … , H and � ∈ 5       
This is known as Fuzzy Additive Goal Programming problem (FAGP) 
 
Step 4: Solve (6) and (7) to get the Pareto Optimal solutions. 
 
3.3. Weighted fuzzy non-linear programming (WFNLP) 
Concerning the relative importance of each of the objective functions )A
��, decision 
maker prefer positive weights P� for � = 1,2, … , H. These weights in normalized form 

will be considered by taking ∑ P�+��� = 1. 
Then considering normalized weights, the fuzzy non-linear programming problem (6) 
becomes 
                                               %<��&�'(		N                                                                      (8) ./0#(12	23			PAJAC)A
��D ≥ N, for � = 1,2, … , H � ∈ 5		<!=	0 ≤ N ≤ 1 

)ℎ(�(	 � P�
+

A�� = 1 

3.4. Weighted fuzzy additive goal programming (WFAGP) 
Concerning the relative importance of each of the objective functions )A
��, decision 
maker prefer positive weights P� for � = 1,2, … , H. These weights in normalized form 

will be considered by taking ∑ P�+��� = 1. 
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Then considering normalized weights, the fuzzy non-linear programming problem (7) 
becomes 

                                  %<��&�'(		 ∑ PAJAC)A
��D+A��                                                    (9) 

                            O/0#(12	23				0 ≤ JAC)A
��D ≤ 1, for � = 1,2, … , H  � ∈ 5 

)ℎ(�(	 � P�
+

A�� = 1 

Few basic definitions of Pareto optimal solutions are presented below. 
 
Definition (Complete optimal Solution) �∗is said to be a complete solution to the MONLP (2) if and only if there exists �∗ ∈ 5 
such that )A
�∗� ≤ )A
�� for  � = 1,2, … , H and for all � ∈ 5. 
But if the objective functions of a multi-objective problems are conflicting in nature, then 
complete solution does not exist in general and so the condition of Pareto optimality 
concept is need to be considered and it is defined as follows. 
 
Definition (Pareto optimal Solution) �∗is said to be a Pareto solution to the MONLP (2) if and only if there does not exist 
another � ∈ 5 such that )A
�∗� ≤ )A
�� for  � = 1,2, … , H and )�
�� ≠ )�
�∗� for at 

least one #, # ∈ {1,2, … , H}. 
 
4. Fuzzy programming technique to solve multi-objective mean-variance model 
(MOMVOM)  
According to Vector Minimization Problem (VMP) the model (1) can be formulated as  

 
                                             Minimize 		
�� = − ∑ ��������                                            (10)        

Minimize �
�� = � � �������
�

���
�

��  

                                                 Subject to: 

� �� = 1,�
���  

�� ≥ 0	, � = 1,2, … … … … … … … … . , ! 
To solve VMP (10) the pay-off matrix is formulated as follows: 

 



A Fuzzy Programming Approach to Multi-objective Mean Variance Model 

167 
 

Now the upper bounds @�, @$ and lower bounds F�, F$ are identified, where F� ≤ 	
�� ≤@� and F$ ≤ �
�� ≤ @$. 
For simplicity we have considered linear membership function for the objective functions 	
�� and �
�� defined as follows 

JC	
��D = 		
TU
V 0																		�			
�� ≤ F�		
�� − F�@� − F� 											�		F� ≤ 	
�� ≤ @�1																	�			
�� ≥ @�

L 

JC�
��D = 		 TU
V 0																		�		�
�� ≥ @$	@$ − �
��@$ − F$ 											�		F$ ≤ �
�� ≤ @$1																	�		�
�� ≥ F$

L 
According to step 3, having elicited the above membership functions crisp non-linear 
problem of (10) is formulated as follows:  
 
Based on FNLP 
                                                  %<��&�'(	N                                                                  (11) ./0#(12	23				
�� ≥ F� + N
@� − F�� �
�� ≤ @$ − N
@$ − F$� 

� �� = 1,�
���  

0 ≤ N ≤ 1 �� ≥ 0	, � = 1,2, … … … … … … … … . , ! 
 
Based on weighted FNLP (WFNLP) 
                                                           %<��&�'(	N                                                         (12) 

./0#(12	23				
�� ≥ F� + NP� 
@� − F�� 

�
�� ≤ @$ − NP$ 
@$ − F$� 

� �� = 1,�
���  

0 ≤ N ≤ 1 P� + P$ = 1 �� ≥ 0	, � = 1,2, … … … … … … … … . , ! 
 
Based on FAGP 

                                         %<��&�'(	 X
?�YZ[\[YZ[ 				 + \]Y^
?�\]YZ] 					                                         (13) 
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0 ≤ 	
�� − F�@� − F� 		 ≤ 1		 
0 ≤ @$ − �
��@$ − F$ 		 ≤ 1 

� �� = 1,�
���  

�� ≥ 0	, � = 1,2, … … … … … … … … . , ! 
Based on weighted FAGP (WFAGP) 

                                            %<��&�'(	P� _X
?�YZ[\[YZ[ `				+ P$ _\]Y^
?�\]YZ] 	`				                     (14) 

0 ≤ 	
�� − F�@� − F� 		 ≤ 1		 
0 ≤ @$ − �
��@$ − F$ 		 ≤ 1 

∑ �� = 1,����  P� + P$ = 1 �� ≥ 0	, � = 1,2, … … … … … … … … . , ! 
Solving (11), (12), (13), (14) we will get the Pareto optimal solution to the corresponding 
problem. 
 
5. Numerical illustration 
The model is validated using a data set of 10 randomly selected assets taken from [19] 
which was actually taken from National Stock Exchange (NSE). 

 

 
Table 1: 

Now the historical return for the entire period is computed which is given in the table 
below. 

Company 1 2 3 4 5 6 7 8 9 10 11 12

ABL 0.072 0.32032 0.2971 0.236 -0.05161 0.50633 -0.02516 0.90484 0.03214 0.45968 0.227 -0.87871

ALL -0.14433 0.19032 0.75032 0.03433 -0.33581 0.247 0.49968 0.27032 -0.32786 0.31968 0.11933 -0.50903

BHL 0.08667 1.05613 0.05516 0.27567 -0.21839 0.49233 1.11516 0.57613 0.17143 0.92258 0.22367 -0.67903

CGL -0.18567 0.76774 0.16194 0.48633 -0.2071 0.47833 0.2571 0.59484 -0.02321 0.55387 0.07333 -0.11871

HHM 0.18233 0.33 0.13677 0.46533 -0.12774 0.56067 0.10839 0 0.14321 0.00968 -0.15767 -0.27258

HCC -0.157 0.61226 1.23548 0.56067 -0.71065 0.97333 0.32839 0.61581 0.03286 0.49935 -0.03733 -0.59452

KMB 0.18567 0.27806 0.55097 0.02733 -0.46613 0.73333 0.20581 0.17065 -0.05286 0.6671 0.373 -0.08355

MML 0.37533 0.65903 0.1929 0.16533 -0.15226 0.80867 0.39097 0.29 0.1975 0.21839 0.031 -0.06548

SIL -0.10467 0.200552 0.31161 0.43333 -0.3171 1.104 0.37194 0.73097 0.03321 0.75903 0.09467 -0.44903

UNL 0.26367 0.41581 0.24484 0.12967 -0.0829 0.54 0.93258 0.61871 0.2275 0.68968 0.65433 0.65258
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Table 2: 

Now the variance – Covariance matrix is computed and given in the table below. 

 
Table 3: 

The Pareto optimal solution for the problem (11) by FNLP is given in Table 4.

 
Table 4: 

The Pareto optimal solution for the problem (13) by FAGP is given in Table 5. 

 
Table 5: 

The Pareto optimal solution for the problem (12) obtained by WFNLP for different 
weights are given in the table below: 

 
Table 6: 

Company Return

ABL 0.17499

ALL 0.0995

BHL 0.33979

CGL 0.23657

HHM 0.11487

HCC 0.27989

KMB 0.21578

MML 0.25928

SIL 0.26859

UNL 0.44054

Company ABL ALL BHL CGL HHM HCC KMB MML SIL UNL

ABL 0.16656 0.08967 0.12861 0.08818 0.04405 0.15995 0.06892 0.0526 0.14154 0.00366

ALL 0.08967 0.122562 0.11421 0.06378 0.02641 0.16708 0.08474 0.04011 0.10279 0.03682

BHL 0.12861 0.11421 0.25614 0.12394 0.05332 0.16096 0.08375 0.08739 0.14854 0.06449

CGL 0.08818 0.06378 0.12394 0.10279 0.0406 0.13204 0.05656 0.05247 0.10984 0.02941

HHM 0.04405 0.02641 0.05332 0.0406 0.05677 0.08892 0.03101 0.0492 0.06321 -0.01296

HCC 0.15995 0.16708 0.16096 0.13204 0.08892 0.32041 0.014144 0.0967 0.20118 0.02667

KMB 0.06892 0.08474 0.08375 0.05656 0.03101 0.14144 0.10648 0.05322 0.10631 0.04434

MML 0.0526 0.04011 0.08739 0.05247 0.492 0.0967 0.05322 0.06992 0.07734 0.01978

SIL 0.14154 0.10279 0.14854 0.10984 0.06321 0.20118 0.10631 0.07734 0.18959 0.04272

UNL 0.00366 0.03682 0.06449 0.02941 -0.01296 0.02667 0.04434 0.01978 0.04272 0.07689

ABL ALL BHL CGL HHM HCC KMB MML SIL UNL Return f(x) Risk g(x)

0 0 0 0 0 0 0 0.1100412 0 0.8899576 0.420594 0.902066486

0 0 0 0 0.1012954 0 0 0.09825821 0 0.8004404 0.389738 0.830304144

0.0004173 0 0 0 0.2811498 0 0 0 0 0.7184266 0.348864 0.797584608

0.000266 0 0 0 0.4298791 0 0 0 0 0.5698523 0.300469 0.754761207

Weights

weight for f(x) =0.2, 

weight for g(x)=0.8

Weight for f(x) =0.4, 

weight for g(x)=0.6

weight for f(x)=0.6, 

weight for g(x)=0.4,

weight for f(x)=0.8, 

weight for g(x)=0.2,
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The Pareto optimal solution for the problem (14) obtained by WFAGP for different 
weights are given in the Table 7. 
       The Pareto optimal solution for the MOMVOM by FNLP and FAGP is given the 
table 4 and 5 respectively, where as the solution by WFNLP and WFAGP is given in 
table 6 and 7 respectively. Here, FNLP method gives more return whereas FAGP method 
gives less risk. So FAGP method gives better results for risk and FNLP method gives 
better results for return. After incorporation of weight from WFNLP we have, while 
increasing the weight associated with the return objective function the return obtained 
gradually decreases while from WFAGP the return associated with greater weight to the 
return objective function gradually increases. The opposite situation occurs for risk 
objective function. From WFNLP we have, while increasing the weight associated with 
the risk objective function the risk obtained increases, whereas from WFAGP while 
increasing the weight associated with the risk objective function the risk obtained 
decreases. 

 
Table 7: 

       And lastly from the above solution tables obtained by FNLP and FAGP we conclude 
that in weighted FNLP method weight may be effect on directly to the objective functions 
but in the weighted FAGP method weight may be effect on inversely to the objective 
function. 
 
5. Conclusion 
In this paper, we had considered Bi-objective Mean- Variance model for portfolio 
selection. Two fuzzy non-linear programming techniques based on FNLP and FAGP are 
used to solve the model. Also weights are considered on both the objective functions and 
then the models are solved by WFNLP and WFAGP method. From the result it is clear 
that fuzzy non-linear programming technique is an efficient technique and may be used in 
any other financial optimization model. 
 
Acknowledgement. The authors are thankful to Department of Mathematics, University 
of Kalyani for providing financial assistance through DST-PURSE program and UGC-
SAP program. Also the authors are thankful to the referee for their valuable suggestions.  

ABL ALL BHL CGL HHM HCC KMB MML SIL UNL Return f(x) Risk g(x)

0 0 0 0 0.4926707 0 0 0 0 0.5073293 0.280092 0.750053719

0 0 0 0 0.3753811 0 0 0 0 0.6246189 0.31829 0.76552987

0 0 0 0 0.0247162 0 0 0.1553227 0 0.8199611 0.404337 0.848536119

0 0 0 0 0 0 0 0 0 1 0.44054 1

Weights

weight for f(x) =0.2, 

weight for g(x)=0.8

Weight for f(x) =0.4, 

weight for g(x)=0.6

weight for f(x)=0.6, 

weight for g(x)=0.4,

weight for f(x)=0.8, 

weight for g(x)=0.2,
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