Characteristic Subgroups of a finite Abelian Group

Amit Sehgal and Manjeet Jakhar

1Govt. College, Birohar, Haryana, India-124106
2NIILM University, Kaithal, Haryana, India-136027
Email: 2dr.manjeet.jakahar@gmail.com
Corresponding author: email: 1amit_sehgal_iit@yahoo.com

Received 10 June 2017; accepted 16 July 2017

Abstract. We consider the following questions: (i) number of characteristic subgroups of a finite abelian p-group \(Z_{p^n} \times Z_{p^n} \) (ii) number of characteristic subgroups of a finite abelian group \(Z_n \times Z_n \) and (iii) characteristic subgroup lattice of \(Z_n \times Z_n \) is isomorphic to subgroup lattice of \(Z_n \).

Keywords: Subgroup; cyclic subgroup; characteristic subgroup; group of all automorphism

AMS Mathematics Subject Classification (2010): 20K01, 20K07

1. Introduction

In 1939, Baer [1] considered the following question “When two groups have isomorphic subgroups lattices?” Since this is a very difficult problem. Here authors consider a related question “When two groups have isomorphic lattices of characteristic subgroups?” In general problem considered by Baer [1] or related question consider by authors seems to very difficult. We will consider only the particular case of finite Abelian group of rank two i.e., \(Z_n \times Z_n \).

A subgroup \(N \) of a group \(G \) is called a Characteristic Subgroup if \(\Phi(N) = N \) for all Automorphism \(\Phi \) of \(G \). This term was first used by Frobenius in 1895.

Theorem 1.1. If \(\gcd(|H|, |K|) = 1 \), \(H \times K \) is characteristic subgroup of \(G \) if and only if \(H \) and \(K \) are characteristic subgroup of \(G \).

Proof: Let \(x \in H \times K \)
\[
\therefore \text{x is uniquely expressed as product of } h \in H \text{ and } k \in K \text{ such that } x = hk.
\]

Then \(f(x) = f(hk) = f(h)f(k) \) \(\forall f \in Aut(G) \)

It is given that \(H \) and \(K \) is characteristic subgroups of \(G \), therefore \(f(h) \in H \) and \(f(k) \in K \).
\[
\therefore f(x) \in HK
\]

Here \(HK = H \times K \) [Because \(H \triangleleft G, K \triangleleft G \) and \(H \cap K = \{e\} \)]
\[
\therefore H \times K \text{ is characteristic subgroup of } G.
\]

Converse \(\therefore \) Let \(h(\neq e) \in H \), then \(h = he \in H \times K \).
Amit Sehgal and Manjeet Jakhar

\[f(h) \in H \times K \quad \forall f \in Aut(G) \quad [\text{Because } H \times K \text{ is characteristic subgroup of } G]. \]

Therefore \(f(h) \) is uniquely expressed as product of elements of \(H \) and \(K \), then \(f(h) = f(h)e. \)

If possible \(f(h) \in K \implies |f(h)|||K| \quad (1) \)

But \(|h||H| \) and \(|f(h)| = |h| \implies |f(h)|||H| \quad (2) \)

From (1) and (2), we have

\[|f(h)|||H|, |K| \implies |f(h)||1 = f(h) = e \implies h = e. \]

This contradiction shows that \(f(h) \in H. \)

Hence \(H \) is characteristic subgroup of \(G. \)

Similarly, \(K \) is characteristic subgroup of \(G. \)

If we denote \(NC(G) \) the number of characteristic subgroups of the group \(G \), then by use of theorem 1.1 we have,

\[p \leq 1 \leq \prod_{i=1}^{r} NC(Z_{p^i} \times Z_{p^i}) \]

\[n = p_1 a_1 p_2 a_2 p_3 a_3 \ldots p_r a_r. \]

Now our problem is reduced to find number of characteristic subgroups of a finite abelian of type \(Z_{p^a} \times Z_{p^a}. \)

2. Partition

Firstly we partition the set \(S \) (non-trivial cyclic subgroups of \(Z_{p^m} \times Z_{p^n} \) \(1 \leq m \leq n \)) into \((p+1)\) partitions.

Two cyclic subgroups \(H \) and \(K \) in \(S \) are equivalent, denoted by \(H \sim K \), if and only if \(H \cap K \) contains a subgroup of order \(p \) (clearly such subgroup is unique and cyclic)

Lemma 2.1. The relation \(\sim \) between elements of the \(S \) is an equivalence relation on \(S. \)

Proof: **Reflexive.** Since \(H \) is a non-trivial cyclic subgroup of \(Z_{p^a_1} \times Z_{p^a_2} \), then \(H \) contains a subgroup of order \(p \). Hence \(H \cap H = H \) contains a subgroup of order \(p \), then \(H \sim H. \)

Symmetric. If \(H \sim K \), then \(H \cap K \) contains a subgroup of order \(p \), since \(H \cap K = K \cap H \).

We deduce that \(K \cap H \) contains a subgroup of order \(p \) and consequently \(K \sim H. \)

Transitive. If \(H \sim K \) and \(K \sim L \), then \(H \cap K \) and \(K \cap L \) contains a subgroup of order \(p \). By using result “every cyclic subgroup of order \(p^\alpha (\alpha \geq 1) \) has unique subgroup of order \(p \)”, hence \(H \) and \(L \) contains same cyclic subgroup of order \(p \) which is contained by \(K. \)

Therefore \(H \cap L \) contains a subgroup of order \(p \) and consequently \(H \sim L. \)

Hence relation \(\sim \) is called equivalence relation.

Theorem 2.2. An equivalence relation \(\sim \) on a non-empty set \(S \) partitions the set \(S \) into the disjoint union of distinct equivalence classes.

Here group \(Z_{p^m} \times Z_{p^n} \) has only \(p+1 \) cyclic subgroups of order \(p \), using above theorem we can partition set \(S \) into \(p+1 \) distinct equivalence class and these partition are as follows:

\(a) \quad [(0,p^{n-1})] = \{ H \in S|H \sim ((0,p^{n-1})}\) and denoted by class-0

\(b) \quad [(p^{m-1},ip^{n-1})] = \{ H \in S|H \sim ((p^{m-1},ip^{n-1})\) and denoted by class-i where \(1 \leq i \leq p. \)

3. Main theorem

Theorem 3.1. Prove that there is exactly one characteristic subgroup of order \(p \) in group \(Z_{p^m} \times Z_{p^n} \) where \(m < n \) i.e., \(((0,p^{n-1})\) which belong to class-0.
Characteristic Subgroups of a finite Abelian Group $Z_n \times Z_n$

Proof: From [2], we know that there are exactly $p+1$ subgroups of order p in group $Z_p^m \times Z_p^n$ and they are given below:

(i) $\langle (0, p^{n-1}) \rangle$ from class-0
(ii) $\langle (p^{m-1}, ip^{n-1}) \rangle$ from class-1 where $1 \leq i \leq p$

Firstly, we prove that $\langle (0, p^{n-1}) \rangle$ is a characteristic subgroup of group $Z_p^m \times Z_p^n$.

In group $Z_p^m \times Z_p^n$, order of element $(0,1)$ is p^n and therefore in any automorphism $(0,1)$ is transferred to element of group $Z_p^m \times Z_p^n$ which has order p^n, they are written as (j, k) where $(k,p)=1$.

Let x be any element of subgroup $\langle (0, p^{n-1}) \rangle$, then $x = (0, rp^{n-1})$.

Let $f(x) = f(0, rp^{n-1}) = rp^{n-1}f(0,1) = rp^{n-1}(j,k) = (rjp^{n-1},rkp^{n-1})$

Hence $f(x) = (0, rp^{n-1}) \in \langle (0, p^{n-1}) \rangle$

Therefore, subgroup $\langle (0, p^{n-1}) \rangle$ is a characteristic subgroup of group $Z_p^m \times Z_p^n$.

Secondly, we prove that $\langle (p^{m-1}, ip^{n-1}) \rangle$ is not a characteristic subgroup of group $Z_p^m \times Z_p^n$ for $1 \leq i \leq p$.

In group $Z_p^m \times Z_p^n$, order of element $(1,0)$ is p^m and therefore in any automorphism $(1,0)$ is transferred to element of group $Z_p^m \times Z_p^n$ which has order p^m which belong to class other than-0. Take $(j \neq 0 (modp)$.

Let f_j be an Automorphism of group $Z_p^m \times Z_p^n$ such that $f_j(1,0) = (1,jp^{n-m})$ and $f_j(0,1) = (0,1)$

Then $f_j(kp^{m-1},ikp^{n-1}) = kp^{m-1}f_j(1,0) + ikp^{n-1}f_j(0,1) = kp^{m-1}(1,jp^{n-m}) + ikp^{n-1}(0,1) = (kp^{m-1},k(i+j)p^{n-1}) \notin \langle (p^{m-1}, ip^{n-1}) \rangle \forall k \neq 0 (modp)$

Hence, subgroup $\langle (p^{m-1}, ip^{n-1}) \rangle$ is a not characteristic subgroup of group $Z_p^m \times Z_p^n$.

Theorem 3.2. Prove that there is no subgroup of order p which is characteristic subgroup of group $Z_p^n \times Z_p^n$.

Proof: From [2], we know that there are exactly $p+1$ subgroups of order p in group $Z_p^n \times Z_p^n$ and they are given below:

(i) $\langle (0, p^{n-1}) \rangle$
(ii) $\langle (p^{n-1}, ip^{n-1}) \rangle$ where $1 \leq i \leq p$.

Firstly, we prove that $\langle (0, p^{n-1}) \rangle$ is not a characteristic subgroup of group $Z_p^n \times Z_p^n$.

Let f_0 be an Automorphism of group $Z_p^n \times Z_p^n$ such that $f_0(1,0) = (0,1)$ and $f_0(0,1) = (1,0)$.

Then $f_0(0,kp^{n-1}) = kp^{n-1}f_0(0,1) = kp^{n-1}(1,0) = (kp^{n-1},0) \notin \langle (0, p^{n-1}) \rangle \forall k \neq 0 (modp)$.

Secondly, we prove that $\langle (p^{n-1}, ip^{n-1}) \rangle$ is not a characteristic subgroup of group $Z_p^n \times Z_p^n$ for $1 \leq i \leq p$.

Let f_i be an Automorphism of group $Z_p^n \times Z_p^n$ such that $f_i(1,0) = (p-i,1)$ and $f_i(0,1) = (1,0)$.

Then $f_i(kp^{n-1},ikp^{n-1}) = kp^{n-1}f_i(1,0) + ikp^{n-1}f_i(0,1) = kp^{n-1}(p-i,1) + ikp^{n-1}(1,0) = (kp^{n-1},kp^{n-1}) = (0,kp^{n-1}) \notin \langle (p^{n-1}, ip^{n-1}) \rangle \forall k \neq 0 (modp)$.
Amit Sehgal and Manjeet Jakhar

Hence there is no subgroup of order p which is characteristic subgroup of group $Z_p^n \times Z_p^n$

Theorem 3.3. [3] Characteristic property is transitive. That is, if N is characteristic subgroup of K and K is characteristic subgroup of G, then N is characteristic subgroup of G.

Theorem 3.4. Number of characteristic subgroup of a group $Z_p^n \times Z_p^n$ are $\tau(p^n)$ and its characteristic subgroup lattice is isomorphic to subgroup lattice of group Z_p^n.

Proof:

Case 1: When subgroup of group $Z_p^n \times Z_p^n$ which is isomorphic group $Z_{p_1^n} \times Z_{p_2^n}$ where $1 \leq \alpha_1 < \alpha_2 \leq n$

If possible there exist a characteristic subgroup H from group $Z_p^n \times Z_p^n$ which is isomorphic group $Z_{p_1^n} \times Z_{p_2^n}$ where $1 \leq \alpha_1 < \alpha_2 \leq n$

By using theorem 3.2, then there exists a characteristic subgroup K of order p from subgroup H.

Now K is characteristic subgroup of H and H is characteristic subgroup of $Z_p^n \times Z_p^n$, by use of theorem 3, we conclude that K is a characteristic subgroup of $Z_p^n \times Z_p^n$. By use of theorem 3.1, K is not a characteristic subgroup of $Z_p^n \times Z_p^n$, which contraction with fact that there exist a characteristic subgroup H from group $Z_p^n \times Z_p^n$ which is isomorphic group $Z_{p_1^n} \times Z_{p_2^n}$ where $1 \leq \alpha_1 < \alpha_2 \leq n$.

Case 2: When subgroup of group $Z_p^n \times Z_p^n$ which is isomorphic $Z_{p_1^n} \times Z_{p_2^n}$ where $0 \leq \alpha \leq n$

From [2], there is exactly one subgroup from group $Z_p^n \times Z_p^n$ which is isomorphic to $Z_{p_1^n} \times Z_{p_2^n}$. This subgroup must be characteristic subgroup. Hence there exist one subgroup for each α, therefore total number of characteristic subgroups of group $Z_p^n \times Z_p^n$ are $n+1$ or $\tau(p^n)$. These subgroups are $< (p^{n-i},0),(0,p^{n-i}) >$ where $i = 0, 1, 2, \ldots, n$

Its characteristic subgroup lattice is as follows:-

$< (0,0) > < (p^{n-1},0),(0,p^{n-1}) > < (p^{n-2},0),(0,p^{n-2}) > \ldots < (1,0),(0,1) > = Z_{p^n} \times Z_{p^n}$

Subgroup lattice of group Z_p^n is as follows:-

$< 0 > < p^{n-1} > < p^{n-2} > \ldots < 1 > = Z_p^n$

Let as define a mapping f from a set of characteristic subgroup of group $Z_p^n \times Z_p^n$ to set of subgroups of Z_p^n such that $f(< (p^{n-i},0),(0,p^{n-i}) >) = < p^{n-i} >$. This mapping f also preserves subset property means $< (p^{n-i},0),(0,p^{n-i}) > < (p^{n-j},0),(0,p^{n-j}) > \Leftrightarrow f(< (p^{n-i},0),(0,p^{n-i}) >) \subseteq f(< (p^{n-j},0),(0,p^{n-j}) >)$

Hence characteristic subgroup lattice of group $Z_p^n \times Z_p^n$ is isomorphic to subgroup lattice of group Z_p^n

Theorem 3.5. Number of characteristic subgroup of a group $Z_n \times Z_n$ are $\tau(n)$ and its characteristic subgroup lattice is isomorphic to subgroup lattice of group Z_n.

122
Characteristic Subgroups of a finite Abelian Group $Z_n \times Z_n$

Proof: We know that $NC(Z_n \times Z_n) = \prod_{i=1}^{r} NC(Z_{p_i^{a_i}} \times Z_{p_i^{a_i}})$ where $n = p_1^{a_1} p_2^{a_2} p_3^{a_3} \ldots p_r^{a_r}$. Hence $NC(Z_n \times Z_n) = \prod_{i=1}^{r} \tau(p_i^{a_i}) = \tau(n)$.

If $LC(G)$ for characteristic subgroup lattice of G, then $LC(Z_n \times Z_n) \cong LC(Z_{p_1^{a_1}} \times Z_{p_2^{a_2}} \times Z_{p_3^{a_3}} \times \ldots \times Z_{p_r^{a_r}})$ is the direct product of corresponding subgroup lattices (Suzuki[5]).

From theorem 3.4, we have $LC(Z_{p_1^{a_1}} \times Z_{p_2^{a_2}} \times Z_{p_3^{a_3}} \times \ldots \times Z_{p_r^{a_r}}) \cong LC(Z_{p_1^{a_1}})$, where $LC(Z_{p_1^{a_1}})$ denotes subgroup lattice of group $Z_{p_1^{a_1}}$.

Hence, $LC(Z_n \times Z_n) \cong LC(Z_{p_1^{a_1}}) \times LC(Z_{p_2^{a_2}}) \times \ldots \times LC(Z_{p_r^{a_r}}) \cong L(Z_n)$.

4. Conclusion

In this paper, we have conclude that Number of characteristic subgroup of a group $Z_n \times Z_n$ are $\tau(n)$ and its characteristic subgroup lattice is isomorphic to subgroup lattice of group Z_n.

REFERENCES