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Abstract. When p = 2 and also whemp = 3, it is established and demonstrated that the
title equation has a solution for each and evetgger x > 1 withy =1 or y = 2. The
equation has infinitely many solutions.
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1. Introduction
The history of Diophantine Equations dates bachrtiquity. There are endless varieties
of Diophantine Equations, and there is no genesthod of solution.

In this article, we consider the equation

p+a' =7, (1)

whenp =2,p =3, 1 <q an odd integer, and, y, z are positive integers. The literature
contains a very large number of articles with vasiequations involving primes and
powers of all kinds. Among them are for example2[13, 4, 5, 6] which relate to (1).

In Section 2 fop=2 withy=1, andin Section3 fop=3 withy=1, 2, itis
established that equation (1) has a solution foh @éategerx> 1.

Thus, equation (1) has infinitely manywians when p =2 and also whemp = 3.

2. The casep=2
In the following Theorem 2.1, we prove that theatipn p“+ ¢’ =Z has a solution for
eachintegerx >1 whenp=2 andy =1 are fixed values.

Theorem 2.1.0fin(1) p=2, 1<q isan odd integer ang =1, then the equation
X2+q =2 2)
has a solution for each and every integer> 1, i.e., the equation has infinitely many
solutions.
Proof: In (2), we shall distinguish two cases, namgly: 2n andx = 2n+ 1 for each
integer n > 1. Afterwards, a solution fok =1 will be demonstrated.
Suppose that = . From (2) we have? + g = Z or

@) +q=72 3
The right-hand side of (3) is a square. Set tlbvalue g as q = 22" + 1 which yields
Z = (2+ 1% Thevaluesq= 22"+ 1and Z = (2'+ 1F substituted in (3) imply that
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(3) is an identity valid for every integer> 1. Thus, for all even values> 2, the
solution of equation (1) is

P, agxy 2=02 2"+1, 2, 1, 2 +1).

Suppose thak = 2+ 1. Then from (2) we obtain
2n21+ ql — ZZ (4)

Since q is odd, therefore is also odd. It then follows from (4) that
22n+1+ (q—l) :22_ 1
= (z-1)@E+1). Thevaluez—1 andz+ 1 are both even. Denote- 1 = 2J, hencez
=20 +1 andz+1 = 2U +1). We then have

D1+ @-1) = V-2U+1)
implying that 4f—1) or M =qg-1 andq
into (5) vyields

4)(U +1) (%)
IM + 1. Substituting Ml = g-1

2271+ M = U(U +1).
The value 2~ tis even, as i§)(U + 1) the product of two consecutive integers.
Therefore,M is even, and denot®l = 2T. This in-turn implies thatq = 8T + 1, and
hence
M2 + 2T = U(U + 1). (6)
Any fixed valuen in (6) yields various valuesT and U which satisfy (6).
Evidently, to prove our case, it suffices to chotbeesmallest possible valug, suchthat
U(U + 1) exceeds 2! for the first time. The difference of the two evietegersU(U
+ 1) and 2'~!then equals the smallest possible valuB i& (6). Therefore, for any
given valuen> 1, the valuesU and T are determined, and thus the respective values
g and z are established. Equation (4) is now satisfiedefich valuen> 1, and equation
(1) has a solution for all odd values> 3.
Finally, forx = 1, we have the following solution of (1)
Paxy2=(2 7 1, 1, 3).
This concludes the proof of the Theorem 2.1. o

The following Table 1 is in accordance witle above argument on equality (6). It
demonstrates (6) when = 1, 2, 3, 4, and the respective minimal gallJ, T, as
well as the valueg and z

Table 1.
n |22+ 2r=uUU+1) | U | U+1 | T | q=8T+1]z=2U+1
1 2'+2T=U(U +1) 2 3 2 17 5
2 2°+2T=UU+1) 3 4 2 17 7
3 22+ 2T=UU+1) 6 7 5 41 13
4 2"+ 2T=U(U + 1) 11 12 2 17 23

3. Thecasep = 3

In the following Theorem 3.1 we prove that theapn p‘+ ¢’ = Z has a solution for
each integerx>2 whenp =3, andy = 1ory = 2 are fixed values. Fax=1, a
solution of equation (1) is exhibited separately.
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Theorem 3.1. Suppose that in (1p = 3 and 1<q isanodd integer. Len>1
be an integer. Ifx=2n and y=1, orif x=2n+ 1 andy = 2, then each of the
equations
32n + ql — ZZ (7)
and
32n+1 + q2 - Z2 (8)
has a solution for every integer> 1,i.e., each equation has infinitely many solutions.
Proof: The two cases will be considered separately.
Suppose (7), i.e.”3+ q' = Z Then (3> +q = Z. Set the odd valug asq= 23"
+ 1.
Hence Z = (38 + 1% The form of (7) is then
@) + (23" +1) = 3 +1F,
an identity valid for every integemn> 1. The solution of equation (1) for all even
valuesx>2 is
(P, 9 xy,2 =@ 23+1 D 1, 3 +1).
Suppose (8), .28 +q® = Z Since § + ¢ is equal to a square, the value
3! satisfies 3" = y+1 or

2n+l 2n+l _ 0+l
S SR e PRI

q:

It is easily verified thatq is always odd, and thereforze is even. Thus, equation (8) is
the identity of the form
2nl _1)\? 2n+1 2
P 3 1 _ 3 +1
2 2

valid for each integen> 1. For all odd valuex > 3, equation (1) has the solution
32n+l -1 32"+1 +1
P a %y 2= (3, ).

, n+1, 2,
The proof of Theorem 3.1 is complete. O

Forx=1whenp=3, q prime andy = 1, the smallest possible solution of (1) is
(P a xy 2=, 13 1, 1, 4).
Other solutions forx =1, p=3, g prime andy =1 also exist.

It is easily seen from equation (1) tinetvaluesx=1, p=3 andy=2 yield q
=1 contrary toq > 1.

Final remark. In [2], the author has exhibited five sabm$ of (1), in whichp
=3,x=1,223, 4,59 prime andy = 1. He raised the question, whether for= 3
equation (1) has a solution for each integer 5, and also conjectured that the answer
is affirmative. In this paper, it has been showat the conjecture is indeed true.
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