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1.   Introduction 
The history of Diophantine Equations dates back to antiquity. There are endless varieties 
of Diophantine Equations, and there is no general method of solution.  
       In this article, we consider the equation 
                                                      px + qy = z2,                                                                  (1) 
when p = 2, p = 3, 1 < q  an odd integer, and  x,  y,  z  are positive integers. The literature 
contains a very large number of articles with various equations involving primes and 
powers of all kinds. Among them are for example [1, 2, 3, 4, 5, 6] which relate to  (1).  
       In Section 2  for  p = 2  with  y = 1,  and in  Section 3  for  p = 3  with  y = 1, 2,  it is 
established that equation (1) has a solution for each integer  x ≥ 1.  
       Thus, equation  (1)  has infinitely many solutions when   p = 2  and also when  p = 3. 
 
2.   The case  p = 2 
In the following Theorem 2.1, we prove that the equation  px + qy = z2  has a solution for 
each integer  x  ≥ 1  when  p = 2  and y  = 1  are fixed values. 
 
Theorem  2.1. If in (1)  p = 2,  1 < q   is an odd integer and   y  = 1,  then the equation  
                                                         2x  +  q1  =  z2                                                            (2) 
has a solution for each and every integer  x  ≥ 1,  i.e., the equation has infinitely many 
solutions. 
Proof:   In (2),  we shall distinguish two cases, namely: x =  2n  and  x  =  2n + 1 for each 
integer  n  ≥ 1. Afterwards, a solution for  x = 1  will be demonstrated.  
       Suppose that  x  =  2n.  From  (2)  we have 22n  +  q1  =  z2  or 
                                                   (2n)2  +  q  =  z2.                                                              (3) 
The right-hand side of  (3)  is a square. Set the odd value  q  as  q = 2·2n + 1 which yields  
z2  =  (2n + 1)2. The values   q = 2·2n + 1 and   z2  =  (2n + 1)2  substituted in (3)  imply that  
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(3)  is an identity valid for every integer n ≥ 1. Thus, for all even values x ≥ 2, the 
solution of equation  (1) is  

 (p,  q,  x,  y,  z)  =  (2,  2·2n  + 1,  2n,  1,  2n  + 1). 

       Suppose that   x  =  2n + 1.  Then from  (2)  we obtain   
                                              22n + 1 +  q1  =  z2.                                                                  (4) 
Since  q  is odd,  therefore  z  is also odd. It then follows from (4) that   
22n + 1 + (q – 1) =  z2 - 1   
=  (z – 1)(z + 1). The values  z – 1  and  z + 1  are both even. Denote  z – 1 = 2U,  hence  z  
=  2U  + 1  and  z + 1  =  2(U  + 1).  We then have  
                            22n + 1 +  (q – 1)  =  2U · 2(U + 1)  =  4U(U + 1)                                   (5) 
implying   that  4|(q – 1)  or   4M  =  q – 1  and   q  =  4M  + 1.  Substituting  4M  =  q – 1  
into  (5)  yields 
                                                    22n – 1  +  M  =  U(U + 1). 
The value 22n – 1 is even, as is U(U + 1) the product of two consecutive integers. 
Therefore,  M  is even, and denote  M  =  2T.  This in-turn implies that   q  =  8T + 1,  and 
hence 
                                            22n – 1  +  2T  =  U(U + 1).                                                      (6) 
       Any fixed value n in (6) yields various values  T  and  U  which satisfy  (6). 
Evidently, to prove our case, it suffices to choose the smallest possible value  U, such that  
U(U + 1) exceeds  22n – 1  for the first time. The difference of the two even integers  U(U 
+ 1) and  22n – 1 then equals the smallest possible value  2T  in  (6). Therefore, for any 
given value  n ≥ 1,  the values  U  and  T  are determined, and thus the respective values  
q  and  z  are established. Equation (4) is now satisfied for each value  n ≥ 1, and equation  
(1) has a solution for all odd values  x ≥ 3. 
       Finally, for  x = 1, we have the following solution of  (1) 

    (p,  q,  x,  y,  z)  =  (2,  7,  1,  1,  3).  
       This concludes the proof of the Theorem 2.1.                                                              □ 
 
       The following Table 1 is in accordance with the above argument on equality (6). It 
demonstrates  (6) when  n  =  1, 2, 3, 4,  and  the respective minimal  values   U,  T,  as 
well as the values  q  and   z.     
 

Table  1. 
n 22n – 1  +  2T  =  U(U + 1) U U + 1 T q = 8T + 1 z = 2U + 1 
1 21 + 2T = U(U + 1) 2 3 2 17 5 
2 23 + 2T = U(U + 1) 3 4 2 17 7 
3 25 + 2T = U(U + 1) 6 7 5 41 13 
4 27 + 2T = U(U + 1) 11 12 2 17 23 

 
3.   The case   p  =  3 
In the following Theorem 3.1  we prove that the equation  px + qy = z2  has a solution for 
each integer  x ≥ 2  when  p  = 3,  and  y  =  1 or  y  =  2  are fixed values. For  x = 1,  a 
solution of equation  (1)  is exhibited separately.  
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Theorem  3.1.  Suppose  that  in  (1)  p  =  3  and  1 <  q  is an odd  integer.  Let   n ≥ 1  
be  an  integer. If  x = 2n  and   y = 1,  or if  x = 2n + 1  and  y = 2,  then each of the 
equations 
                                                   32n  +  q1  =   z2                                                                (7) 
and  
                                                   32n+1  +  q2  =  z2                                                              (8) 
has a solution for every integer  n ≥ 1, i.e.,  each equation has infinitely many solutions. 
Proof:  The two cases will be considered separately.  
       Suppose (7), i.e., 32n + q1 =  z2. Then (3n)2 + q  =  z2. Set the odd value  q  as q =  2·3n  
+ 1. 
 Hence   z2  =  (3n  + 1)2.  The form of  (7)  is then 

 (3n)2  +  (2·3n  + 1)1  =  (3n  + 1)2 ,  
an  identity  valid  for  every  integer  n ≥ 1. The  solution  of  equation (1) for all  even 
values  x ≥ 2  is  

(p,  q,  x,  y,  z)  =  (3,  2·3n  + 1,  2n,  1,  3n  + 1). 
       Suppose  (8),  i.e., 32n+1 + q2  =  z2.  Since  32n+1  +  q2  is equal to a square, the value 
32n+1  satisfies  32n+1  =  2q + 1  or   

q  = 
2

13 12 −+n

, and  z  =  q  +  1 =  
2

13 12 −+n

 + 1 = 
2

13 12 ++n

.  

It is easily verified that  q  is always odd, and therefore  z  is even. Thus, equation  (8) is 
the identity of the form  

 32n+1  +  

212

2

13







 −+n

=   

212

2

13







 ++n

 

valid for each integer  n ≥ 1.  For all odd values  x ≥ 3,  equation  (1)  has the solution  

(p,  q,  x,  y,  z)  =  (3,  
2

13 12 −+n

,  2n + 1,  2,  
2

13 12 ++n

).  

       The proof of Theorem 3.1  is complete.                                                              □  
 
       For  x = 1 when  p = 3,  q  prime and  y = 1, the smallest possible solution of (1) is 

(p,  q,  x,  y,  z)  =  (3,  13,  1,  1,  4). 
Other solutions for  x = 1,   p = 3,  q  prime and  y = 1  also exist.  
 
       It  is  easily seen from equation  (1)  that the values  x = 1,  p = 3  and  y = 2  yield  q 
= 1 contrary to  q > 1. 
 
 Final remark.   In  [2],  the  author  has  exhibited  five  solutions of  (1),  in  which   p  
=  3,  x  =  1, 2, 3, 4, 5,  q  prime and  y  =  1.  He raised the question, whether for   p  =  3 
equation (1)  has a solution for each integer  x > 5,   and also conjectured that the answer 
is affirmative. In this paper, it has been shown that the conjecture is indeed true. 
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