

Short Communication Augmented Nirmala Index of Certain Nanotubes

V.R.Kulli

Department of Mathematics
Gulbarga University, Gulbarga 585 106, India
E-mail: vrkulli@gmail.com

Received 1 November 2025; accepted 23 December 2025

Abstract. In this study, we introduce the augmented Nirmala and reciprocal augmented Nirmala indices of a graph. Furthermore, we compute these augmented Nirmala indices for certain nanotubes.

Keywords: augmented Nirmala index, reciprocal augmented Nirmala index, nanotube.

AMS Mathematics Subject Classification (2010): 05C10, 05C69

1. Introduction

In this paper, G denotes a finite, simple, connected graph, $V(G)$ and $E(G)$ denote the vertex set and edge set of G . The degree $d_G(u)$ of a vertex u is the number of vertices adjacent to u . We refer [1], for other undefined notations and terminologies.

Graph indices have their applications in various disciplines of Science and Technology. For more information about graph indices, see [2].

The Nirmala index [3] of a graph is defined as

$$N(G) = \sum_{uv \in E(G)} \sqrt{d_G(u) + d_G(v)}.$$

We define the augmented Nirmala index of a graph G as

$$AN(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v)}{d_G(u) + d_G(v) - 2}}.$$

We define the reciprocal augmented Nirmala index of a graph G as

$$RAN(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v) - 2}{d_G(u) + d_G(v)}}.$$

Recently, some Nirmala indices were studied in [4, 5, 6, 7, 8].

In this paper, the augmented Nirmala and reciprocal augmented Nirmala indices of certain nanotubes are computed.

2. Results for $HC_5C_7[p,q]$ nanotubes

We consider $HC_5C_7[p,q]$ nanotubes in which p is the number of heptagones in the first row and q rows of pentagones repeated alternately. The 2-D lattice of nanotube $HC_5C_7[8,4]$ is shown in Figure 1.

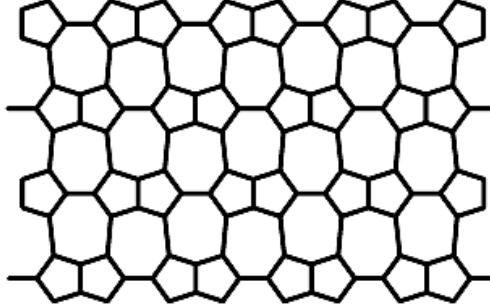


Figure 1: 2-D lattice of $HC_5C_7[8,4]$ nanotube

Let G be the graph of $HC_5C_7[p,q]$ nanotubes. We see that the vertices of G are either of degree 2 or 3. Therefore $\Delta(G) = 3$ and $\delta(G) = 2$. By algebraic method, we obtain that G has $4pq$ vertices and $6pq - p$ edges. In G , there are two types of edges based on the degree of end vertices of each edge as follows:

$$E_{23} = \{uv \in E(G) \mid d_G(u) = 2, d_G(v) = 3\}, |E_{23}| = 4p.$$

$$E_{33} = \{uv \in E(G) \mid d_G(u) = d_G(v) = 3\}, |E_{33}| = 6pq - 5p.$$

Theorem 1. Let $G=HC_5C_7[p,q]$ be the nanotubes. Then

$$AN(G) = 6\sqrt{\frac{3}{2}}pq + \left(4\sqrt{\frac{5}{3}} - 5\sqrt{\frac{3}{2}}\right)p.$$

Proof: We have

$$\begin{aligned} AN(G) &= \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v)}{d_G(u) + d_G(v) - 2}} \\ &= 4p\sqrt{\frac{2+3}{2+3-2}} + (6pq - 5p)\sqrt{\frac{3+3}{3+3-2}} \\ &= 4p\sqrt{\frac{5}{3}} + (6pq - 5p)\sqrt{\frac{3}{2}} = 6\sqrt{\frac{3}{2}}pq + \left(4\sqrt{\frac{5}{3}} - 5\sqrt{\frac{3}{2}}\right)p. \end{aligned}$$

Theorem 2. Let $G=HC_5C_7[p,q]$ be the nanotubes. Then

$$RAN(G) = 6\sqrt{\frac{2}{3}}pq + \left(4\sqrt{\frac{3}{5}} - 5\sqrt{\frac{2}{3}}\right)p.$$

Proof: We have

$$RAN(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v) - 2}{d_G(u) + d_G(v)}}$$

Augmented Nirmala Index of Certain Nanotubes

$$= 4p\sqrt{\frac{2+3-2}{2+3}} + (6pq - 5p)\sqrt{\frac{3+3-2}{3+3}} = 6\sqrt{\frac{2}{3}}pq + \left(4\sqrt{\frac{3}{5}} - 5\sqrt{\frac{2}{3}}\right)p.$$

3. Results for $SC_5C_7[p,q]$ nanotubes

We consider $SC_5C_7[p,q]$ nanotubes in which p is the number of heptagones in the first row and q rows of vertices and edges are repeated alternately. The 2-D lattice of nanotube $SC_5C_7[8,4]$ is depicted in Figure 2.

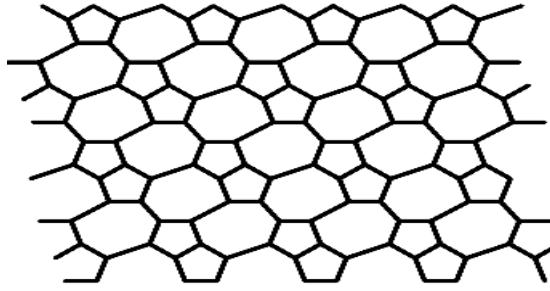


Figure 2: 2-D lattice of nanotube $SC_5C_7[8,4]$

Let H be the graph of $SC_5C_7[p,q]$ nanotubes. We see that the vertices of H are either of degree 2 or 3. Thus $\Delta(H) = 3$ and $\delta(H) = 2$. By algebraic method, we obtain that H has $4pq$ vertices and $6pq - p$ edges. In H , there are three types of edges based on the degree of end vertices of each edge as follows:

$$\begin{aligned} E_{22} &= \{uv \in E(H) \mid d_G(u) = d_G(v) = 2\} \quad |E_{22}| = q. \\ E_{23} &= \{uv \in E(H) \mid d_G(u) = 2, d_G(v) = 3\} \quad |E_{23}| = 6q. \\ E_{33} &= \{uv \in E(H) \mid d_G(u) = d_G(v) = 3\} \quad |E_{33}| = 6pq - p - 7q. \end{aligned}$$

Theorem 3. Let $H=SC_5C_7[p,q]$ be the nanotubes. Then

$$AN(H) = 6\sqrt{\frac{3}{2}}pq - \sqrt{\frac{3}{2}}p + \left(\sqrt{2} + 6\sqrt{\frac{5}{3}} - 7\sqrt{\frac{3}{2}}\right)p.$$

Proof: We have

$$\begin{aligned} AN(H) &= \sum_{uv \in E(H)} \sqrt{\frac{d_H(u) + d_H(v)}{d_H(u) + d_H(v) - 2}} \\ &= q\sqrt{\frac{2+2}{2+2-2}} + 6q\sqrt{\frac{2+3}{2+3-2}} + (6pq - p - 7q)\sqrt{\frac{3+3}{3+3-2}} \\ &= 6\sqrt{\frac{3}{2}}pq - \sqrt{\frac{3}{2}}p + \left(\sqrt{2} + 6\sqrt{\frac{5}{3}} - 7\sqrt{\frac{3}{2}}\right)p. \end{aligned}$$

Theorem 4. Let $H=SC_5C_7[p,q]$ be the nanotubes. Then

V.R.Kulli

$$RAN(H) = 6\sqrt{\frac{2}{3}}pq - \sqrt{\frac{2}{3}}p + \left(\sqrt{\frac{1}{2}} + 6\sqrt{\frac{3}{5}} - 7\sqrt{\frac{2}{3}} \right)p.$$

Proof: We have

$$\begin{aligned} RAN(H) &= \sum_{uv \in E(H)} \sqrt{\frac{d_H(u) + d_H(v) - 2}{d_H(u) + d_H(v)}} \\ &= q\sqrt{\frac{2+2-2}{2+2}} + 6q\sqrt{\frac{2+3-2}{2+3}} + (6pq - p - 7q)\sqrt{\frac{3+3-2}{3+3}} \\ &= 6\sqrt{\frac{2}{3}}pq - \sqrt{\frac{2}{3}}p + \left(\sqrt{\frac{1}{2}} + 6\sqrt{\frac{3}{5}} - 7\sqrt{\frac{2}{3}} \right)p. \end{aligned}$$

4. Conclusion

In this paper, we have introduced the augmented Nirmala and reciprocal augmented Nirmala indices of a graph. Also the augmented Nirmala and reciprocal augmented Nirmala indices of certain nanotubes are determined.

REFERENCES

1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
2. V.R.Kulli, Graph indices, in *Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society*, M. Pal. S. Samanta and A. Pal, (eds.) IGI Global, USA (2019) 66-91.
3. V.R.Kulli, Nirmala index, *International Journal of Mathematics Trends and Technology*, 67(3) (2021) 8-12. doi: 10.14445/22315373/IJMTT-V67I3P502.
4. K.K.Prashanth, Gayatri Annasagaram, M.Parvathi, Deepasree S.Kumar, Anita Settar and S.Uma, Application of the Nirmala index in nanotechnology: Optimizing molecular structures for advanced nanomaterials, *Journal of Physics*, 2886 (2024) 012003.
5. H.C.Shilpa, K.Gayatri, B.N.Dharmendra, H.M.Nagesh and M.K.Siddiqui, On Nirmala indices- based entropy measures of silicon carbide network Si₂C₃-III[α , β], *Silicon*, 16 (2024) 4971-4981.
6. N.F.Yalcin, Bounds on Nirmala energy of graphs, *Acta Univ. Sapientiae Informatica* 14(2) (2022) 3-2-315.
7. S.Raghu, V.R.Kulli, K.M.Niranjan and V.M.Goudar, Nirmala indices of certain antiviral drugs, *International Journal of Mathematics and Computer Research*, 11(11) (2023) 3862-3866. DOI:10.47191/ijmcr/v11i11.05.
8. V.R.Kulli, Nirmala alpha Gourava and modified Nirmala alpha Gourava indices of certain dendrimers, *International Journal of Mathematics and Computer Research*, 12(5) (2024) 4256-4263.