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Abstract. In this study, we introduce the augmented Nirmala and reciprocal augmented
Nirmala indices of a graph. Furthermore, we compute these augmented Nirmala indices for
certain nanotubes.
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1. Introduction
In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex
set and edge set of G. The degree ds(u) of a vertex u is the number of vertices adjacent to
u. We refer [1], for other undefined notations and terminologies.

Graph indices have their applications in various disciplines of Science and
Technology. For more information about graph indices, see [2].

The Nirmala index [3] of a graph is defined as
N(G)= D dgW)+dg (V).

uveE(G)

We define the augmented Nirmala index of a graph G as

~ dg (W) +dg (v)
AN(G)‘UV§G)J do (W) + o ()2

We define the reciprocal augmented Nirmala index of a graph G as
rRaN(G)= Y [de(Wrde(v)=2
uveE(G) dG (U)+dG (v)

Recently, some Nirmala indices were studied in [4, 5, 6, 7, 8].

In this paper, the augmented Nirmala and reciprocal augmented Nirmala indices of certain
nanotubes are computed.
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2. Results for HCsC7[p,q] nhanotubes
We consider HCsC+[p,q] nanotubes in which p is the number of heptagones in the first row
and g rows of pentagones repeated alternately. The 2-D lattice of nanotube HCsC/[8,4] is

shown in Figure 1.
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Figure 1: 2-D lattice of HCsC/[8,4] nanotube

Let G be the graph of HCsC+[p,q] nanotubes. We see that the vertices of G are
either of degree 2 or 3. Therefore A(G) = 3 and 6(G) = 2. By algebraic method, we obtain
that G has 4pq vertices and 6pg — p edges. In G, there are two types of edges based on the
degree of end vertices of each edge as follows:

E23= {UVE E(G) | dG(U) = 2, dG(V) = 3}, |E23| = 4p
Ess = {uveE(G)| de(u) = ds(v) = 3}, |Ess| = 6pg — 5p.

Theorem 1. Let G=HCsC/[p,q] be the nanotubes. Then

3 5 3
AN(G)=6\qu +[4\f5 - 5\/;] p.

Proof: We have

AN(G) = \/ dg (W+dg (V)
uveE(G) dG (u)+ dG (v)-2

2+3 3+3
=4 6pq — 5

P 2+3—2+( P p) 3+3-2

:4p\/§+(6pq - 5p)\E=6\qu+[4\E - S\E] P-

Theorem 2. Let G=HCsC-[p,q] be the nanotubes. Then
2 3 2
RAN(G)=6,|=pg+| 4,]—— 5,/= |p.

dg (u)+dg (v)-2
dg (u) +dg (v)

Proof: We have

RAN(G)=

uveE(G)
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2+3-2 3+3-2 2 3 2
—4p,] 6pq — 5 / =6,|= 4/——5/— :
P\ 23 +(6pq — 5p) 3+3 3pq+( 5 3Jp

3. Results for SCsC+[p,q] nanotubes

We consider SCsCv[p,q] nanotubes in which p is the number of heptagones in the first row
and q rows of vertices and edges are repeated alternately. The 2-D lattice of nanotube
SCsCv[8,4] is depicted in Figure 2.

Figure 2: 2-D lattice of nanotube SCsC+[8,4]

Let H be the graph of SCsC;[p,q] nanotubes. We see that the vertices of H are either of
degree 2 or 3. Thus A(H) = 3 and 8(H) = 2. By algebraic method, we obtain that H has 4pq
vertices and 6pq — p edges. In H, there are three types of edges based on the degree of end
vertices of each edge as follows:

E, = {UVGE(H) | dG(U) = dG(V) = 2} |E22| =q.
Ex={uveE(H) | de(u) =2, ds(v) = 3} |E2s| = 60.
Ess={uveE(H) | de(u) = dg(v) = 3} |Ess| =6pg—p —7q.

Theorem 3. Let H=SCsC;[p,q] be the nanotubes. Then
3 3 5 3
AN(H)=6,/>pq—.[>p+|v2+6,/=— 7.]> |p.
(H) ./qu 1/210+[ + 1/3 ./z]p

~ dy (W+dy (v)
AN(H) _UVGE(H)\/dH (W) +dy (v)-2

2+2 2+3 3+3
= 6 6pg—-p-7
q\/2+2_2+ q\/2+3—2+( Pq-Pp q) 3+3-2

=6\qu—\Ep+[«5+6\/§— 7\5] p.

Theorem 4. Let H=SCsC+[p,q] be the nanotubes. Then

Proof: We have
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2 2 1 3 2
RAN(H)=6\gpq—\Ep+(\E+6\E— 7@) p.

Proof: We have

B dy (W+dy (v)-2
RAN(H)—UVE%H)\/ 0 0+ d W)

2+2-2 2+3-2 3+3-2
= 6 6pg—-p-7
q\/ 2+ " q\/ 2+ +( Pa-P q) 3+3

B 2 3
2 2 1 3 2
:6/— —/— ,/— 6/——7/— .
3P 3p+( 2 "5 3Jp

4. Conclusion

In this paper, we have introduced the augmented Nirmala and reciprocal augmented

Nirmala indices of a graph. Also the augmented Nirmala and reciprocal augmented
Nirmala indices of certain nanotubes are determined.
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