

On the Diophantine Equation $7^x + 2 \cdot p^y = z^2$

Suton Tadee

Department of Mathematics
Faculty of Science and Technology
Thepsatri Rajabhat University, Lopburi 15000, Thailand
E-mail: suton.t@lawasri.tru.ac.th

Received 31 October 2025; accepted 20 December 2025

Abstract. This paper investigates the Diophantine equation $7^x + 2 \cdot p^y = z^2$, where p is a prime number and x, y, z are non-negative integers. We first observe that if $p = 2$, then the equation has only three solutions (x, y, z) , namely $(1, 0, 3)$, $(0, 2, 3)$, and $(2, 4, 9)$. For $p = 7$, all solutions of the equation are of the following form $(x, y, z) = (2t+1, 2t, 3 \cdot 7^t)$, where t is a non-negative integer. Finally, using the properties of the Legendre symbol, we show that if $p = \pm 5, \pm 11, \pm 13 \pmod{28}$, then the equation has a unique non-negative integer solution $(x, y, z) = (1, 0, 3)$.

Keywords: Diophantine equation; Legendre symbol; Mihailescu's theorem

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

In 2019, Laipaporn, Wananiyakul and Khachorncharoenkul [1] studied the Diophantine equation $3^x + p5^y = z^2$, where p is a prime number and x, y, z are non-negative integers.

In 2022, Thongnak, Chuayjan and Kaewong [2] found that $(x, y, z) = (2, 0, 10)$ is the unique non-negative integer solution of the Diophantine equation $11 \cdot 3^x + 11^y = z^2$. Moreover, they also showed that the Diophantine equation $5^x - 2 \cdot 3^y = z^2$ has no solution in non-negative integers [3]. In the same year, Siraworakun and Tadee [4] proved that two Diophantine equations $16^x + qp^y = z^4$ and $16^x - qp^y = z^4$, where p and q are prime numbers with $p \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$, have no positive integer solution. In 2023, Tadee [5] investigated the Diophantine equations $(n+2)^x - 2 \cdot n^y = z^2$ and $(n+2)^x + 2 \cdot n^y = z^2$, where n is a positive integer with $n = 2$ or $n \equiv 3 \pmod{4}$. Porto, Bousi and Ferreira [6] found non-negative integer solutions of the Diophantine equation $p \cdot 3^x + p^y = z^2$, when p is a prime number. Tadee [7] presented all non-negative integer solutions of the Diophantine equation $p^x + pq^y = z^2$, where p and q are distinct prime numbers. In 2024, Tadee [8] studied the Diophantine equation $(p+2)^x + 4 \cdot p^y = z^2$, where p and $p+2$ are prime numbers with $\text{ord}_p 2 = p-1$. In the same year, he found all

Suton Tadee

non-negative integer solutions of the Diophantine equations $(p-1)^x + 2 \cdot p^y = z^2$ and $(p-1)^x - 2 \cdot p^y = z^2$, where p is a prime number [9]. Phosri and Tadee [10] presented some conditions of the non-existence of non-negative integer solutions for the Diophantine equations $q^x + p(2q+1)^y = z^2$ and $q^x + p(4q+1)^y = z^2$, when p and q are prime numbers. In 2025, Neres [11] studied the Diophantine equation $5^x + 3 \cdot p^y = z^2$, where p is a prime number with $p \equiv 1, 2, 3, 4 \pmod{5}$.

Motivated by previous studies on Diophantine equations, we will consider the Diophantine equation $7^x + 2 \cdot p^y = z^2$, where p is a prime number and x, y, z are non-negative integers.

2. Preliminaries

In this section, we present some helpful Theorems and Definitions.

Theorem 2.1. (Mihailescu's theorem) [12] The Diophantine equation $a^x - b^y = 1$, where a, b, x and y are integers with $\min\{a, b, x, y\} > 1$, has the unique integer solution $(a, b, x, y) = (3, 2, 2, 3)$.

Theorem 2.2. [13] The Diophantine equation $2 + 7^y = z^2$ has the unique non-negative solution $(y, z) = (1, 3)$.

Definition 2.1. Let p be an odd prime and a be an integer such that $\gcd(a, p) = 1$. If the congruence $z^2 \equiv a \pmod{p}$ has an integer solution, then a is said to be a quadratic residue of p . Otherwise, a is called a quadratic non-residue of p .

Definition 2.2. Let p be an odd prime and a be an integer such that $\gcd(a, p) = 1$. The Legendre symbol, $\left(\frac{a}{p}\right)$, is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue of } p \\ -1 & \text{if } a \text{ is a quadratic non-residue of } p. \end{cases}$$

Theorem 2.3. [14] Let p be an odd prime and a, b be integers with $\gcd(a, p) = 1$ and $\gcd(b, p) = 1$.

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Theorem 2.4. [15] Let p be an odd prime with $p \neq 7$.

On the Diophantine Equation $7^x + 2 \cdot p^y = z^2$

$$\left(\frac{7}{p} \right) = \begin{cases} 1 & \text{if } p \equiv \pm 1, \pm 3, \pm 9 \pmod{28} \\ -1 & \text{if } p \equiv \pm 5, \pm 11, \pm 13 \pmod{28}. \end{cases}$$

3. Main results

In this section, we present our research results, starting with Case $p = 2$, Case $p = 7$, and Case $p \equiv \pm 5, \pm 11, \pm 13 \pmod{28}$, respectively.

Theorem 3.1. The Diophantine equation $7^x + 2 \cdot 2^y = z^2$ has exactly three non-negative integer solutions (x, y, z) , namely, $(1, 0, 3)$, $(0, 2, 3)$ and $(2, 4, 9)$.

Proof: Let x, y and z be non-negative integers such that $7^x + 2^{y+1} = z^2$.

Case 1. $y = 0$. Therefore $7^x + 2 = z^2$. By Theorem 2.2, it follows that $x = 1$ and $z = 3$. Then $(x, y, z) = (1, 0, 3)$.

Case 2. $y \geq 1$. Therefore $7^x + 2^{y+1} \equiv (-1)^x \pmod{4}$. It implies that $z^2 \equiv (-1)^x \pmod{4}$. Assume that x is odd. Then $z^2 \equiv 3 \pmod{4}$. This is impossible since $z^2 \equiv 0, 1 \pmod{4}$. Therefore, x is even. There exists a non-negative integer k such that $x = 2k$. Then $(z - 7^k)(z + 7^k) = 2^{y+1}$. Thus $z - 7^k = 2^u$ and $z + 7^k = 2^{y+1-u}$ for some non-negative integer u with $u \leq y+1$. It follows that $2 \cdot 7^k = 2^u (2^{y+1-2u} - 1)$. Then $u = 1$ and so $7^k = 2^{y-1} - 1$ or $2^{y-1} - 7^k = 1$. It is easy to see that $y \neq 1$. If $y = 2$, then $7^k = 1$ and so $k = 0$. It implies that $x = 0$ and $z = 3$. Therefore $(x, y, z) = (0, 2, 3)$. Suppose that $y > 2$. By Theorem 2.1, we get $k \leq 1$. Next, we consider the following subcases:

Subcase 2.1. $k = 0$. Then $2^{y-1} = 2$ and so $y = 2$. This is impossible.

Subcase 2.2. $k = 1$. Then $2^{y-1} = 8$ and so $y = 4$. It implies that $x = 2$ and $z = 9$.

Then $(x, y, z) = (2, 4, 9)$.

From Case 1 and 2, we conclude that the Diophantine equation $7^x + 2 \cdot 2^y = z^2$ has exactly three non-negative integer solutions $(x, y, z) \in \{(1, 0, 3), (0, 2, 3), (2, 4, 9)\}$.

Theorem 3.2. All non-negative integer solutions of the Diophantine equation $7^x + 2 \cdot 7^y = z^2$ are of the following form $(x, y, z) = (2t+1, 2t, 3 \cdot 7^t)$, where t is a non-negative integer.

Proof: Let x, y and z be non-negative integers such that $7^x + 2 \cdot 7^y = z^2$. Assume that $x < y$. Then $7^x (1 + 2 \cdot 7^{y-x}) = z^2$. Since $\gcd(7^x, 1 + 2 \cdot 7^{y-x}) = 1$, there exists a non-negative integer k such that $1 + 2 \cdot 7^{y-x} = k^2$. Then $(k-1)(k+1) = 2 \cdot 7^{y-x}$. We consider the following cases:

Case 1. $k-1=1$ and $k+1=2 \cdot 7^{y-x}$. Then $2=2 \cdot 7^{y-x}-1$ and so $3=2 \cdot 7^{y-x}$. This is impossible.

Case 2. $k-1=2$ and $k+1=7^{y-x}$. Then $2=7^{y-x}-2$ and so $4=7^{y-x}$. This is impossible.

Suton Tadee

Case 3. $k-1=7^{y-x}$ and $k+1=2$. Then $2=2-7^{y-x}$ and so $0=7^{y-x}$. This is impossible.

Case 4. $k-1=2\cdot7^{y-x}$ and $k+1=1$. Then $2=1-2\cdot7^{y-x}$ and so $-1=2\cdot7^{y-x}$. This is impossible.

Thus $x \geq y$. Then $7^y(7^{x-y}+2)=z^2$. Since $\gcd(7^y, 7^{x-y}+2)=1$, there exists a non-negative integer t such that $y=2t$. Then $7^{x-2t}+2=\left(\frac{z}{7^t}\right)^2$. By Theorem 2.2, we obtain that $x=2t+1$ and $z=3\cdot7^t$. Hence, all non-negative integer solutions of the Diophantine equation $7^x+2\cdot7^y=z^2$ are of the following form $(x, y, z)=(2t+1, 2t, 3\cdot7^t)$, where t is a non-negative integer.

Next, we show that $(x, y, z)=(1, 0, 3)$ is the unique solution of the Diophantine equation $7^x+2\cdot p^y=z^2$, where p is a prime number with $p \equiv \pm 5, \pm 11, \pm 13 \pmod{28}$. First, we will prove two helpful lemmas.

Lemma 3.3. Let p be a prime number with $p \neq 2$ and $p \neq 7$. If x is even, then the Diophantine equation $7^x+2\cdot p^y=z^2$ has no non-negative integer solution.

Proof: Assume that there exist non-negative integers x, y and z such that $7^x+2\cdot p^y=z^2$. Since x is even, we get $x=2k$ for some non-negative integer k . It implies that $(z-7^k)(z+7^k)=2\cdot p^y$. Since p is a prime number with $p \neq 2$ and $p \neq 7$, we have the following cases:

Case 1. $z-7^k=1$ and $z+7^k=2\cdot p^y$. It follows that $2\cdot7^k=2\cdot p^y-1$ and so $2|1$. This is impossible.

Case 2. $z-7^k=2$ and $z+7^k=p^y$. It follows that $2\cdot7^k=p^y-2$ and so $2|p^y$. This is impossible.

Case 3. $z-7^k=p^y$ and $z+7^k=2$. It follows that $2\cdot7^k=2-p^y$ and so $2|p^y$. This is impossible.

Case 4. $z-7^k=2\cdot p^y$ and $z+7^k=1$. It follows that $2\cdot7^k=1-2\cdot p^y$ and so $2|1$. This is impossible.

Corollary 3.4. Let p be a prime number with $p \neq 2$ and $p \neq 7$. Then the Diophantine equation $49^x+2\cdot p^y=z^2$ has no non-negative integer solution.

Proof: Assume that there exist non-negative integers x, y and z such that $49^x+2\cdot p^y=z^2$ or $7^{2x}+2\cdot p^y=z^2$. This is impossible since $2x$ is even and Lemma 3.3.

Lemma 3.5. Let p be a prime number with $p \equiv \pm 5, \pm 11, \pm 13 \pmod{28}$. If x is odd, then the Diophantine equation $7^x+2\cdot p^y=z^2$ has the unique non-negative integer solution $(x, y, z)=(1, 0, 3)$.

On the Diophantine Equation $7^x + 2 \cdot p^y = z^2$

Proof: Let x, y and z be non-negative integers such that $7^x + 2 \cdot p^y = z^2$.

Case 1. $y=0$. Then $7^x + 2 = z^2$. By Theorem 2.2, we obtain that $(x, y, z) = (1, 0, 3)$.

Case 2. $y \geq 1$. Then $z^2 = 7^x + 2 \cdot p^y \equiv 7^x \pmod{p}$. It implies that $\left(\frac{7^x}{p}\right) = 1$. By Theorem 2.3, we have $\left(\frac{7^x}{p}\right) = \left(\frac{7}{p}\right)^x = 1$. Since x is odd, we get $\left(\frac{7}{p}\right) = 1$. This is impossible since $p \equiv \pm 5, \pm 11, \pm 13 \pmod{28}$ and Theorem 2.4.

From Lemma 3.3 and 3.5, we have the following theorem.

Theorem 3.6. Let p be a prime number with $p \equiv \pm 5, \pm 11, \pm 13 \pmod{28}$. Then the Diophantine equation $7^x + 2 \cdot p^y = z^2$ has the unique non-negative integer solution $(x, y, z) = (1, 0, 3)$.

4. Conclusion

Based on Mihailescu's theorem, we investigate the Diophantine equation $7^x + 2 \cdot p^y = z^2$, where p is a prime number and x, y, z are non-negative integers. For $p = 2$, we establish that there are only three non-negative integer solutions to the equation. The solutions are $(x, y, z) \in \{(1, 0, 3), (0, 2, 3), (2, 4, 9)\}$. For $p = 7$, all non-negative integer solutions of the equation are of the following form $(x, y, z) = (2t+1, 2t, 3 \cdot 7^t)$, where t is a non-negative integer. Moreover, by using the properties of Legendre symbol, we prove that if $p \equiv \pm 5, \pm 11, \pm 13 \pmod{28}$, then the equation has the unique non-negative integer solution $(x, y, z) = (1, 0, 3)$.

Acknowledgements. The author would like to thank reviewers for careful reading of this manuscript and the useful comments. This work was supported by Research and Development Institute and Faculty of Science and Technology, Thepsatri Rajabhat University, Thailand.

Conflict of interest. The paper is written by a single author so there is no conflict of interest.

Authors' Contributions. It is a single-author paper. So, full credit goes to the author.

REFERENCES

1. K. Laipaporn, S. Wananiyakul and P. Khachorncharoenkul, On the Diophantine equation $3^x + p5^y = z^2$, *Walailak Journal of Science and Technology*, 16(9) (2019) 647-653.

Suton Tadee

2. S. Thongnak, W. Chuayjan and T. Kaewong, On the Diophantine equation $11 \cdot 3^x + 11^y = z^2$ where x, y and z are non-negative integers, *Annals of Pure and Applied Mathematics*, 25(1) (2022) 51-54.
3. S. Thongnak, W. Chuayjan and T. Kaewong, On the exponential Diophantine equation $5^x - 2 \cdot 3^y = z^2$, *Annals of Pure and Applied Mathematics*, 25(2) (2022) 109-112.
4. A. Siraworakun and S. Tadee, On two Diophantine equations $16^x + qp^y = z^4$ and $16^x - qp^y = z^4$, *Rattanakosin Journal of Science and Technology*, 4(3) (2022) 40-45.
5. S. Tadee, On the Diophantine equations $(n+2)^x - 2 \cdot n^y = z^2$ and $(n+2)^x + 2 \cdot n^y = z^2$ *Annals of Pure and Applied Mathematics*, 27(1) (2023) 19-22.
6. A. Porto, M. Bousi and G. Ferreira, On the exponential Diophantine equation $p \cdot 3^x + p^y = z^2$ with p a prime number, *Annals of Pure and Applied Mathematics*, 28(1) (2023) 13-19.
7. S. Tadee, Solutions of the Diophantine equation $p^x + pq^y = z^2$ where p and q are distinct prime numbers, *Journal of Science and Technology, Ubon Ratchathani University*, 25(1) (2023) 57-61. (in Thai)
8. S. Tadee, On the solutions of the Diophantine equation $(p+2)^x + 4 \cdot p^y = z^2$, *Academic Journal of Science and Applied Science*, 1 (2024) 11-16. (in Thai)
9. S. Tadee, On the solutions of the Diophantine equations $(p-1)^x + 2 \cdot p^y = z^2$ and $(p-1)^x - 2 \cdot p^y = z^2$, *Journal of Science and Technology CRRU*, 3(2) (2024) 15-22. (in Thai)
10. P. Phosri and S. Tadee, On the Diophantine equations $q^x + p(2q+1)^y = z^2$ and $q^x + p(4q+1)^y = z^2$, *Thai Journal of Mathematics*, 22(2) (2024) 389-395.
11. F. Neres, On the Diophantine equations $5^x + 3 \cdot p^y = z^2$ where $p \equiv 1, 2, 3, 4 \pmod{5}$ is a prime number, *Palestine Journal of Mathematics*, 14(3) (2025) 886-892.
12. P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, *Journal für die Reine und Angewandte Mathematik*, 572 (2004) 167-195.
13. J. Zhang and Y. Li, On the equation $(-1)^\alpha p^x + (-1)^\beta (2^k (2p-1))^y = z^2$ for prime pairs $(p, 2p-1)$, *Integers*, 24 (2024) 1-16.
14. D. Redmond, *Number theory: an introduction*. Marcel Dekker, Inc., New York, 1996.
15. R.J.S. Mina and J.B. Bacani, On a Diophantine equation of type $p^x + q^y = z^3$. *Konuralp Journal of Mathematics*, 10(1) (2022) 55-58.