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Abstract. This paper investigates the Diophantine equation 7* + 2.p¥ = 72, where p is a prime
number and x, y, z are non-negative integers. We first observe that if p = 2, then the equation
has only three solutions (x, y, z), namely (1, 0, 3), (0, 2, 3), and (2, 4, 9). For p = 7, all
solutions of the equation are of the following form (x, y, z) = (2t+1, 2t, 3.7), where t is a
non-negative integer. Finally, using the properties of the Legendre symbol, we show that
if p =45, £11, £13 (mod 28), then the equation has a unique non-negative integer solution
x,y,2)=(1,0,3).
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1. Introduction
In 2019, Laipaporn, Wananiyakul and Khachorncharoenkul [1] studied the Diophantine

equation 3* + p5’ =z?, where p is a prime number and x, y, z are non-negative integers.
In 2022, Thongnak, Chuayjan and Kaewong [2] found that (x,y,z)=(2,0,10) is the

unique non-negative integer solution of the Diophantine equation 11-3*+11Y =277 .

Moreover, they also showed that the Diophantine equation 5 —2-3¥ = z* has no solution
in non-negative integers [3]. In the same year, Siraworakun and Tadee [4] proved that two
Diophantine equations 16* +qp’ =z* and 16" —qp’ =z*, where p and q are prime

numbers with p=3(mod4) and q=3(mod4), have no positive integer solution. In 2023,
Tadee [5] investigated the Diophantine equations (n+2) -2-n’=z" and
(n+2)X +2-n’ =2°, where n is a positive integer with n=2 or n=3(mod4) . Porto,

Bousi and Ferreira [6] found non-negative integer solutions of the Diophantine equation
p-3*+ p’ =2%, when p is a prime number. Tadee [7] presented all non-negative integer

solutions of the Diophantine equation p* + pg’ =z°, where p and q are distinct prime

numbers. In 2024, Tadee [8] studied the Diophantine equation (p+2)" +4-p’=2%,
where p and p+2 are prime numbers with ord ;2= p—1. In the same year, he found all
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non-negative integer solutions of the Diophantine equations (p—l)x+2- p’ =z? and

(p-1)"-2-p’=2%, where pis a prime number [9]. Phosri and Tadee [10] presented
some conditions of the non-existence of non-negative integer solutions for the Diophantine
equations q*+p(2q+1)’ =z° and g*+p(4q+1)’ =z*, when p and q are prime
numbers. In 2025, Neres [11] studied the Diophantine equation 5* +3- p¥ = z*, where p
is a prime number with p=1, 2,3, 4(mod5).

Motivated by previous studies on Diophantine equations, we will consider the
Diophantine equation 7* +2-p’ =z*, where p is a prime number and x,y,z are non-
negative integers.

2. Preliminaries
In this section, we present some helpful Theorems and Definitions.

Theorem 2.1. (Mihailescu’s theorem) [12] The Diophantine equation a* —b* =1, where
a,b,x and vy are integers with min{a, b, x, y}>1, has the unique integer solution

(a,b,x,y)=(322.3).

Theorem 2.2. [13] The Diophantine equation 2+ 7Y =z* has the unique non-negative
solution (y, z)=(13).

Definition 2.1. Let p be an odd prime and a be an integer such that gcd(a, p) =1. If the

congruence z° = a(mod p) has an integer solution, then a is said to be a quadratic residue
of p. Otherwise, a is called a quadratic non-residue of p.

Definition 2.2. Let p be an odd prime and a be an integer such that gcd(a, p)=1. The
Legendre symbol, [ij , is defined by
P

a) 1 if aisaquadratic residue of p
p) | -1 if aisaquadratic non-residue of p.

Theorem 2.3. [14] Let p be an odd prime and a,b be integers with gcd(a, p)=1and

T ey

Theorem 2.4. [15] Let p be an odd prime with p=7.
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[7}_{ 1 if p=+1+3+9(mod28)

p) | -1 if p=45+11+13(mod28).

3. Main results
In this section, we present our research results, starting with Case p=2, Case p=7, and

Case p=45,+11, ilB(mod 28) , respectively.

Theorem 3.1. The Diophantine equation 7* +2-2Y =z* has exactly three non-negative
integer solutions (x,y,z), namely, (1,0,3),(0,2,3) and (2,4,9).

Proof: Let x,y and z be non-negative integers such that 7* + 2¥** = z°.

Case 1. y=0. Therefore 7* +2=2z°. By Theorem 2.2, it follows that x=1 and z=3.
Then (x,y,2)=(1,0,3).

Case 2. y=>1. Therefore 7" +2"" =(-1)"(mod4). It implies that z* =(-1)"(mod4).
Assume that x is odd. Then z* =3(mod4). This is impossible since z* =0,1(mod4).
Therefore, x is even. There exists a non-negative integer k such that x=2k . Then
(z-7)(z+7)=2"". Thus z-7=2" and z+7*=2""" for some non-negative
integer u with u<y+1. It follows that 2.7 =2”(2y*1’2“ —1) . Then u=1and so

7*=2""-1or 2" -7"=1.Iteasytoseethat y=1.If y=2, then 7 =1 andso k=0.
It implies that x=0 and z=3. Therefore (x,y,z)=(0,2,3). Suppose that y>2. By

Theorem 2.1, we get k <1. Next, we consider the following subcases:
Subcase 2.1. k=0.Then 2" =2 and so y=2. This is impossible.

Subcase 2.2. k=1.Then 2> =8 andso y=4. It implies that x=2 and z=9.
Then (x,y,2)=(2,4,9).

From Case 1 and 2, we conclude that the Diophantine equation 7* +2-2” = z* has
exactly three non-negative integer solutions (x,y,z)<{(10,3),(0,2,3),(2,4,9)}.

Theorem 3.2. All non-negative integer solutions of the Diophantine equation
7 +2-7" = 2? are of the following form (x, y,z):(2t+1, 2t,3-7‘), where t is a non-
negative integer.

Proof: Let x,y and z be non-negative integers such that 7* +2-7¥ =z?. Assume that
X<y . Then 7*(1+2-7y’x)=z2 . Since gcd(?x,1+2-7y’*)=1, there exists a non-

negative integer k such that 1+2-7 =k?. Then (k—1)(k+1)=2-7"". We consider
the following cases:

Case 1. k—1=1 and k+1=2-7"". Then 2=2-7""-1 and so 3=2-7""". This is
impossible.

Case 2. k—1=2 and k+1=7"".Then 2=7""—-2 and so 4=7"". This is impossible.
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Case3. k—-1=7""and k+1=2.Then 2=2-7"" and so 0=7"". This is impossible.
Case 4. k—1=2-7"" and k+1=1. Then 2=1-2-7"" and so -1=2-7""*. This is
impossible.

Thus x>y . Then 7y(7x’y+2)=22. Since gcd(?y,7x’y+2)=1, there exists a non-

2
negative integer tsuch that y=2t. Then 7% +2=(7—th . By Theorem 2.2, we obtain

that x=2t+1 and z=3-7"'. Hence, all non-negative integer solutions of the Diophantine
equation 7" +2-7” =2° are of the following form (x,y,z)=(2t+1 2t,3-7"), where t is
a non-negative integer.

Next, we show that (x,y,z)=(10,3) is the unique solution of the Diophantine
equation 7*+2-p’ =z?, where p is a prime number with p=+5+11,+13(mod28) .
First, we will prove two helpful lemmas.

Lemma 3.3. Let p be a prime number with p=2and p=7. If x is even, then the
Diophantine equation 7* +2- p¥ = z® has no non-negative integer solution.

Proof: Assume that there exist non-negative integers x,y and z such that 7* +2- p¥ = z2.
Since x is even, we get x=2k for some non-negative integer k . It implies that
(z=7)(z+7*)=2-p’. Since p is a prime number with p=2and p=7, we have the
following cases:

Casel. z—7“=1and z+7"=2-p”. It follows that 2-7" =2- p’ -1 and so 2|1. This is

impossible.
Case 2. z—7“=2 and z+7“=p”’. It follows that 2.7 = p* —2 and so 2|p’. This is
impossible.
Case 3. z—7“=p’ and z+7“=2. It follows that 2.7 =2—p” and so 2|p’. This is
impossible.

Case 4. z—7“=2-p’ and z+7“=1. It follows that 2-7* =1-2.p” and so 2[1. This is
impossible.

Corollary 3.4. Let p be a prime number with p=2and p=7. Then the Diophantine
equation 49* +2- p¥ = z* has no non-negative integer solution.

Proof: Assume that there exist non-negative integers x,y and z such that 49 +2- p’ =2°
or 7 +2-p’ =2". This is impossible since 2x is even and Lemma 3.3.

Lemma 3.5. Let p be a prime number with p=+5,+11,+13(mod 28). If x is odd, then
the Diophantine equation 7* +2-p’ =z* has the unique non-negative integer solution

(x,y,2)=(10,3).
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Proof: Let x,y andz be non-negative integers such that 7* +2.- p¥ =z°.
Case 1. y=0.Then 7" +2=2z°. By Theorem 2.2, we obtain that (x,y,z)=(1,0,3).

X

Case 2. y>1. Then z* =7 +2.p’ =7*(mod p). It implies that (7—]=1. By Theorem
p

2.3, we have [%) =(%J =1. Since x is odd, we get (Z) =1. This is impossible since
P

p =+5,%11,+13(mod 28) and Theorem 2.4.
From Lemma 3.3 and 3.5, we have the following theorem.

Theorem 3.6. Let p be a prime number with p=+5+11,+13(mod28) . Then the
Diophantine equation 7*+2-p’ =z> has the unique non-negative integer solution

(x,y,2)=(10,3).

4. Conclusion

Based on Mihailescu’s theorem, we investigate the Diophantine equation 7* +2- p¥ = z?,
where p is a prime number and X, y,z are non-negative integers. For p =2, we establish
that there are only three non-negative integer solutions to the equation. The solutions are
(x,y,2)€{(1,0,3),(0,2,3),(2.4,9)} . For p=7, all non-negative integer solutions of the

equation are of the following form (x,y,z) :(Zt +1, 2t,3-7‘), where t is a non-negative

integer. Moreover, by using the properties of Legendre symbol, we prove that if
p=45,+11, J_rls(mod 28) , then the equation has the unique non-negative integer solution

(x,y,2)=(10,3).
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