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Abstract. This paper investigates the Diophantine equation 7x + 2.py = z2, where p is a prime 

number and x, y, z are non-negative integers. We first observe that if p = 2, then the equation 

has only three solutions (x, y, z), namely (1, 0, 3), (0, 2, 3), and (2, 4, 9). For p = 7, all 

solutions of the equation are of the following form (x, y, z) = (2t+1, 2t, 3.7t), where t  is a 

non-negative integer. Finally, using the properties of the Legendre symbol, we show that 

if p = ±5, ±11, ±13 (mod 28), then the equation has a unique non-negative integer solution 

(x, y, z) = (1, 0, 3).  
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1. Introduction 
In 2019, Laipaporn, Wananiyakul and Khachorncharoenkul [1] studied the Diophantine 

equation 23 5x yp z  , where p is a prime number and , ,x y z are non-negative integers. 

In 2022, Thongnak, Chuayjan and Kaewong [2] found that     , , 2,0,10x y z   is the 

unique non-negative integer solution of the Diophantine equation 211 3 11x y z   . 

Moreover, they also showed that the Diophantine equation 25 2 3x y z    has no solution 

in non-negative integers [3]. In the same year, Siraworakun and Tadee [4] proved that two 

Diophantine equations  416x yqp z   and 416x yqp z  , where p  and q  are prime 

numbers with  3 mod4p   and  3 mod4q  , have no positive integer solution. In 2023, 

Tadee [5] investigated the Diophantine equations   22 2
x yn n z     and 

  22 2
x yn n z    , where n  is a positive integer with 2n   or  3 mod 4n  . Porto, 

Bousi and Ferreira [6] found non-negative integer solutions of the Diophantine equation
23x yp p z   , when p  is a prime number. Tadee [7] presented all non-negative integer 

solutions of the Diophantine equation 
2x yp pq z  , where p  and q  are distinct prime 

numbers. In 2024, Tadee [8] studied the Diophantine equation   22 4
x yp p z    , 

where p  and 2p   are prime numbers with ord 2 1p p  . In the same year, he found all 
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non-negative integer solutions of the Diophantine equations   21 2
x yp p z    and 

  21 2
x yp p z    , where p is a prime number [9]. Phosri and Tadee [10] presented 

some conditions of the non-existence of non-negative integer solutions for the Diophantine 

equations   22 1
yxq p q z   and   24 1

yxq p q z   , when p  and q  are prime 

numbers. In 2025, Neres [11] studied the Diophantine equation 25 3x yp z   , where p  

is a prime number with  1, 2, 3, 4 mod5p  . 

 

Motivated by previous studies on Diophantine equations, we will consider the 

Diophantine equation 27 2x yp z   , where p  is a prime number and , ,x y z are non-

negative integers. 

 

2. Preliminaries 

In this section, we present some helpful Theorems and Definitions. 

 

Theorem 2.1. (Mihailescu’s theorem) [12] The Diophantine equation 1x ya b  , where 

, ,a b x  and y are integers with  min , , , 1a b x y  , has the unique integer solution 

   , , , 3, 2, 2, 3a b x y  .  

 

Theorem 2.2. [13] The Diophantine equation 22 7 y z   has the unique non-negative 

solution    , 1,3y z  . 

 

Definition 2.1. Let p  be an odd prime and a  be an integer such that  gcd , 1a p  . If the 

congruence  2 modz a p  has an integer solution, then a  is said to be a quadratic residue 

of p . Otherwise, a  is called a quadratic non-residue of p . 

 

Definition 2.2. Let p  be an odd prime and a  be an integer such that  gcd , 1a p  . The 

Legendre symbol, 
a

p

 
 
 

 , is defined by 

1 if is a quadratic residue of

1 if is a quadratic non-residue of .

a pa

a pp

  
  

 
 

 

Theorem 2.3. [14] Let p  be an odd prime and ,a b be integers with  gcd , 1a p  and 

 gcd , 1b p  . 

ab a b

p p p

    
    

    
. 

Theorem 2.4. [15] Let p  be an odd prime with 7p  . 
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 

 

1 if 1, 3, 9 mod 287

1 if 5, 11, 13 mod 28 .

p

pp

      
  

      
 

 

3. Main results 

In this section, we present our research results, starting with Case 2p  , Case 7p  , and 

Case  5, 11, 13 mod28p     , respectively. 

 

Theorem 3.1. The Diophantine equation 27 2 2x y z    has exactly three non-negative 

integer solutions  , ,x y z , namely,  1,0,3 ,  0,2,3  and  2,4,9 . 

Proof: Let  ,x y  and z  be non-negative integers such that 1 27 2x y z  .  

Case 1.  0y  . Therefore 27 2x z  . By Theorem 2.2, it follows that 1x   and 3z  . 

Then    , , 1, 0, 3x y z  . 

Case 2.  1y  . Therefore    17 2 1 mod4
xx y   . It implies that    2 1 mod4

x
z   . 

Assume that x  is odd. Then  2 3 mod4z  . This is impossible since  2 0,1 mod4z  . 

Therefore, x  is even. There exists a non-negative integer k  such that 2x k . Then 

   17 7 2k k yz z    . Thus 7 2k uz    and 17 2k y uz     for some non-negative 

integer u  with 1u y  . It follows that  1 22 7 2 2 1k u y u    . Then 1u  and so 

17 2 1k y   or 12 7 1y k   . It easy to see that 1y  . If 2y  , then 7 1k   and so 0k  . 

It implies that 0x   and 3z  . Therefore    , , 0, 2, 3x y z  . Suppose that 2y  . By 

Theorem 2.1, we get 1k  . Next, we consider the following subcases: 

 Subcase 2.1.  0k  . Then 12 2y   and so 2y  . This is impossible. 

Subcase 2.2.  1k  . Then 12 8y   and so 4y  . It implies that 2x   and 9z  . 

Then    , , 2, 4, 9x y z  . 

From Case 1 and 2, we conclude that the Diophantine equation 27 2 2x y z    has 

exactly three non-negative integer solutions         , , 1,0,3 , 0,2,3 , 2,4,9x y z  . 

 

Theorem 3.2. All non-negative integer solutions of the Diophantine equation 
27 2 7x y z    are of the following form    , , 2 1, 2 , 3 7tx y z t t   , where t  is a non-

negative integer.  

Proof: Let  ,x y  and z  be non-negative integers such that 27 2 7x y z   .  Assume that 

x y . Then   27 1 2 7x y x z   . Since  gcd 7 ,1 2 7 1x y x   , there exists a non-

negative integer k such that 21 2 7 y x k   . Then   1 1 2 7y xk k     . We consider 

the following cases: 

Case 1. 1 1k     and 1 2 7 y xk    . Then 2 2 7 1y x    and so 3 2 7y x  . This is 

impossible. 

Case 2. 1 2k    and 1 7 y xk   . Then 2 7 2y x   and so 4 7y x . This is impossible. 
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Case 3. 1 7 y xk    and 1 2k   . Then 2 2 7y x   and so 0 7y x . This is impossible. 

Case 4. 1 2 7 y xk      and 1 1k   . Then 2 1 2 7 y x    and so 1 2 7y x   . This is 

impossible. 

Thus x y . Then   27 7 2y x y z   . Since  gcd 7 ,7 2 1y x y   , there exists a non-

negative integer t such that 2y t . Then 

2

27 2
7

x t

t

z  
   

 
. By Theorem 2.2, we obtain 

that 2 1x t   and 3 7tz   . Hence, all non-negative integer solutions of the Diophantine 

equation 27 2 7x y z    are of the following form    , , 2 1, 2 , 3 7tx y z t t   , where t  is 

a non-negative integer.  

 

 Next, we show that    , , 1,0,3x y z   is the unique solution of the Diophantine 

equation 27 2x yp z   , where p  is a prime number with  5, 11, 13 mod28p     . 

First, we will prove two helpful lemmas. 

 

Lemma 3.3. Let p  be a prime number with 2p  and 7p  . If x  is even, then the 

Diophantine equation 27 2x yp z    has no non-negative integer solution. 

Proof: Assume that there exist non-negative integers ,x y  and z such that 27 2x yp z   .  

Since x  is even, we get 2x k  for some non-negative integer k . It implies that 

  7 7 2k k yz z p    . Since p  is a prime number with 2p  and 7p  , we have the 

following cases: 

Case 1. 7 1kz    and 7 2k yz p   . It follows that 2 7 2 1k yp     and so 2 1 . This is 

impossible. 

Case 2. 7 2kz     and 7k yz p  . It follows that 2 7 2k yp    and so 2 yp . This is 

impossible. 

Case 3. 7k yz p    and 7 2kz   . It follows that 2 7 2k yp    and so 2 yp . This is 

impossible. 

Case 4. 7 2k yz p    and 7 1kz   . It follows that 2 7 1 2k yp     and so 2 1 . This is 

impossible. 

 

Corollary 3.4. Let p  be a prime number with 2p  and 7p  . Then the Diophantine 

equation 
249 2x yp z    has no non-negative integer solution. 

Proof: Assume that there exist non-negative integers ,x y  and z such that 249 2x yp z    

or 
2 27 2x yp z   . This is impossible since 2x is even and Lemma 3.3.  

 

Lemma 3.5. Let p  be a prime number with  5, 11, 13 mod28p     . If x  is odd, then 

the Diophantine equation 
27 2x yp z    has the unique non-negative integer solution 

   , , 1,0,3x y z  . 
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Proof: Let ,x y  and z  be non-negative integers such that 27 2x yp z   .   

Case 1. 0y  . Then 27 2x z  . By Theorem 2.2, we obtain that    , , 1,0,3x y z  . 

Case 2. 1y  . Then  2 7 2 7 modx y xz p p    . It implies that 
7

1
x

p

 
 

 
. By Theorem 

2.3, we have 
7 7

1

xx

p p

   
    
  

 . Since x  is odd, we get 
7

1
p

 
 

 
. This is impossible since 

 5, 11, 13 mod28p      and Theorem 2.4. 

 

From Lemma 3.3 and 3.5, we have the following theorem. 

 

Theorem 3.6. Let p  be a prime number with  5, 11, 13 mod28p     . Then the 

Diophantine equation 27 2x yp z    has the unique non-negative integer solution 

   , , 1,0,3x y z  . 

 

4. Conclusion 

Based on Mihailescu’s theorem, we investigate the Diophantine equation 27 2x yp z   , 

where p  is a prime number and , ,x y z are non-negative integers. For 2p  , we establish 

that there are only three non-negative integer solutions to the equation. The solutions are 

        , , 1,0,3 , 0,2,3 , 2,4,9x y z  . For 7p  , all non-negative integer solutions of the 

equation are of the following form    , , 2 1,2 ,3 7tx y z t t   , where t  is a non-negative 

integer. Moreover, by using the properties of Legendre symbol, we prove that if 

 5, 11, 13 mod28p     , then the equation has the unique non-negative integer solution 

   , , 1,0,3x y z  . 
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