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Abstract. Let k, x, y, and z be hon-negative integers. Consider the Exponential Diophantine
equation (3% - 1)* + (3% = z2 This is a non-linear Diophantine equation in four variables
k, x,y and z. This paper investigates the Exponential Diophantine equation (3% - 1)* + (34
= 72 for all the non-negative integer solutions. This paper uses Catalan’s Conjecture known
as Mihailescue’s theorem as a special tool in addition to the factorization methods, modular
arithmetic and elementary mathematical concepts in the construction of the proofs.
Moreover in some special cases it agrees with results obtained by the previous papers also.
Some important consequences are drawn through the observation of the solutions to the
problem.
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1. Introduction

Eugene Charles Catalan conjectured a theorem known as Catalan’s Conjecture [2] (or
Mihailescu’s theorem [3]) in 1844. It was proved by Mihailescu in 2002. Let a, b, x,y, z
be non-negative integers. The Exponential Diophantine a* + bY = z? is studied by so
many mathematicians [ 2, 3, 4,5, 6, 7, 8, 9,10,11,12,13,14, 15, 16,17, 18,19,20, 21].
Suvarnamani [4] studied the Diophantine equation 2* + p¥ = z2 where p is a prime
number. Banyat Sroysang [7] presented that the Diophantine equation 2* + 3¥ = z2 has
exactly three nonnegative integer solutions (3,0,3), (0,1,2) and (4,2,5). Simtrakankul [10]
solved the Diophantine equation (2% —1)" + (2%)” = 22 with k as even positive whole
number. Hoque [11] studied the Diophantine equation M, + (Mpq + 1)y = z2 , where
My is a Mersenne prime. Rehmawati, Sugandha, Trippena and Prabhavo [12] solved the
Non linear Diophantine Equation (75 — 1)* + (75)” = z2 with k is the positive even
whole number. In 2021 Gayo and Bacani [14] investigated for the non-negative integer
solutions of Diophantine EquationM,* + (Mq + 1)y = z2. In the same year Sandhya [13]
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investigated for the non-negative integer solutions of the exponential Diophantine
equation p* + (p + 1)¥ = z2, pis a prime number. In 2023, Kulprapa Srimud and Suton
Tadee [15] investigated for the nonnegative integer solutions of the Exponential
Diophantine equation 3% + bY = z2, where b is a positive integer such that b = 5mod20
or b = 5mod30.There is an open problem in the remaining cases as stated in their
conclusion part [15]. In 2023, Rao [16] proved that the exponential Diophantine equation
23% 4+ 233Y = z% has a unique solution (1,1,16).In 2018, Rao [17] proved that the
Diophantine equation 3* 4+ 7¥ = z?2 has exactly two non-negative integer solutions (1,0,2)
and (2,1,4).In 2025, Suton Tadee [18] proved that the Diophantine equation 7% +
147Y = z? has exactly two non-negative integer solutions (2, 1, 14) and (5, 2, 196).In
2019, Burshtien [19] proved that the Diophantine equation 8* 4+ 9Y = z2 has no
solutions in positive integers x, y, z. In 2024, Biswas [20] investigated the Diophantine
equation 3* + 63Y = z2 and found that it has exactly two solutions (1,0,2), (0,1,8). In
2022, Rao [21] investigated the Diophantine equation 23* — 19¥ = z2 and proved that it
has exactly two solutions(0,0,0), (1,1,2).

In this paper the exponential Diophantine equation (3¥ — 1)* + (3X)Y = z2, where k is
a nonnegative integer, is solved for non-negative integer solutions by using Catalan’s
Conjecture [2] and modular arithmetic and some elementary methods.

2. Preliminaries
Catalan’s conjecture [2] plays an important role in solving Exponential Diophantine
equations. This conjecture was proved by Preda Mihailescu [3] in 2002.

Lemma 2.1. (Catalan’s Conjecture [2] or Mihailescu’s Theorem [3]):
The quadruple (a, x, b, y) = (3,2,2,3) is the only integer solution for the Diophantine
equation a* — bY = 1, where a, X, b, y are integers with min{a, x, b, y} > 1.

Lemma 2.2. The exponential Diophantine equation 1+ (3%¥)¥ = z2 has an integer
solution (k,y,z) = (1,1,2), where K is a non-negative integer.
Proof: Let x,y, z, k be non-negative integers such that

1+ (3%)Y =22 (1)
The proof is presented in proof by three cases.

Case-1 Put y = 0in (1), we get
z2 =2
This is not solvable for integer solution.

Case-2 Puty = 1in (1), we get

1+ (39 =22,

3¥=(z-1)(z+1)

So that,

kU =(z+1),
where 3% = (z — 1).
Thus

2z = 3k"1 4 31 = 3u(3k2U 4 1),
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Hence,
3% =1and (3k 2% +1) =2z
From 3% = 1,we getu = 0.
Thus from 3% = (z — 1), we get z = 2.
Therefore (k,y,z) = (1,1, 2) is an integer solution of the Diophantine equation (1).

Case-3when y > 1.
From (1)
z2—- 3 =1
This has no integer solution by lemma 2.1 (Catalan’s Conjecture).

Lemma 2.3. The exponential Diophantine equation (3% — 1)* + 1 = z? has integer
solutions (k, x, z) = (1,3,3) and (k,x,z) = (2n,1,3™) for any non-negative integer n.

Proof: Let k, x, z, k be non-negative integers such that

@BF-1)*+1=22 ®)
Consider the proof by three cases.
Case-1: When x = 0 equation (2) gives z2 = 2 which is not solvable for integer solution.

Case-2: When x = 1, from (2) we get (3% — 1) + 1 = 22
Then 3% = z2 which gives 3™ = z when k = 2n where n is a non-negative integer.
Therefore (k,x,z) = (2n,1,3™) is a solution for any non-negative integer n.

Case-3: when x > 1, from (2) we can write z2 — (3 —1)" = 1.

Using Catalan’s conjecture the solution is z = x = 3 and 3¥ — 1 = 2, then 3¥ =3, so
thatk = 1.

Therefore (k, x,z) = (1,3,3) is a solution of (2).

Lemma 2.4. Let x, y, z, k be non-negative integers. Then the value of z is always an odd
integer in the solution of the Exponential Diophantine equation (3% — 1)* + (3%)Y = 22,

Proof: Let x, y, z, k be non-negative integers.
Consider

(3% — 1)* + (3F)Y = 22,
Case-1: When Kk is an even integer,

3k = 1mod 4
3kY = 1 mod 4
But, for x > 1,
(3% —1)" = 0 mod 4
Hence,

z2.= (3% - 1)*+ (3%)Y = 1mod 4
Therefore z is an odd integer.

Case-2: When k is an odd integer,
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3% = 3mod 4
3kY = 3Y mod 4

3kY = 3V mod 4 = {3 mod 4, Wheny.is an odd i.nteger
1 mod 4, when y is an even integer

Whenx > 1
2 mod 4 whenx =1

0 mod 4, whenx > 1
3 mod 4, when y is an odd ineger

1 mod 4, when y is even integer

(3"—1)x52"m0d45{

3kY = 3Y mod 4 E{

1 mod 4, whenx = 1and y is odd

2 _ ok qx Ky — 3 mod 4, whenx = 1 and y is even
z%.=(3 DEESCOIE 3mod4, whenx>1landyisodd
1 mod 4, whenx > 1and y is even
1 mod 4, whenx = 1and y is odd
. _ { 3 mod 4, impossible when x = 1 and y is even
27=1 3 mod 4, impossible whenx > 1and y is odd
1 mod 4, whenx > 1and y is even
Hence z2.= 1 mod 4
Therefore z is an odd positive integer only. 3)

Thus we may search for the solutions in two cases only.

3. Main result
Theorem 3.1. Let x, y, z, k be non-negative integers. The Exponential Diophantine
equation (3¥ — 1)* + (3%)¥ = z? has the following non-negative integer solutions.
1.  The quadruple (k,x,y,z) = (0,cq,cy, 1) is a solution, where c;, c, are non-
negative integers.
2. (kx, v, 2)=(1,0,1,2),(1,3,0,3),(1,4,2,5).
3. (k,x,y,z) = (2n,1,0,3™) , where n is a non- negative integer.
Proof: Let k be a non-negative integer and x, y, z be non-negative integers such that
(k,x,y,z) be an integer solution of the exponential Diophantine equation
(3% —1)* + (3%)Y = 22 (4)
Case-1: wheny = 0, equation (4) becomes equation (2)
BF—1)*+1 =22
By lemma 2.3 (2) has integer solutions, for any non-negative integer n
(k,x,z) =(1,3,3)and (k,x,z) = (2n,1,3™)
Therefore (k,x,y,z) = (1,3,0,3) and (k, x,y,z) = (2n,1,0,3™ ) are solutions of (4) for
any non-negative integer n.

Case-2: When y>1,k=0
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Subcase-2.1 when x = 0, (4) becomes
1+ (34 =22

By lemma 2.2 it has an integer solution (k,y,z) = (1,1,2), where k is a non-negative

integer.
So that (4) has an integer solution (k, x,y,z) = (1,0,1, 2).

Subcase-2.2 When x > 1.
Now there are two cases hamely X is even and X is odd.

Subcase-2.2.1: Suppose that x is an even number.
For some integer m, x = 2m.
Using the following factorization in (4)

(3) =2 - (3=
=|z- (3 -1)"|[z+ (3*-1)"]
= 3B+a
Here, a and B are chosen such that « > S, such that

|z— (3 - 1)"|=3F [z + (3" - 1)"]| = 3=

From (5) we get,
3ky — 3[3+a

ky=p0+a.
From (6) we get,
3¢ —3F = 2(3k —1)™

38(3%F —1) =2(3* - 1)™

Applying the factorization method for (8), we get (9) and (10)
B*F-1)=2 }
38 = (3k—1)"
3% F-1)= 3F
2=3-1)"

Subcase-2.2.1.1 From (9) ,

ta—f=1andB =m=0.
Therefore «a =1, =0, m =0

From (7),
ky=B+a=1,
Thisgives k = y = 1 only.
From (6),
z=2.

Therefore (k, x,y,z) = (1,0,1,2) is an integer solution of (4).

Subcase-2.2.1.2: From (10),
2=3-1)"
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Asaresultm =k =1, Sothat x = 2.
Putx = 2 in (4) we get 22 + 3Y = z2,
Also from (10),
(3% F—-1)= 3F
Then by the factorization method, we get
(3 F—-1)=1and 3f =1.
Thus 8 = 0and(3* — 1) =1, Then
(3%) =2
This is not solvable for the integer solution.

Using another factorization in (4)
So using [z - (3k - 1)m] =38in (5)
We get,
|z + (3 - 1)"| =30F
Adding these two
2z = 38 + 3kv-F
As 8 = 0, it reduces to 2z = 1 + 3%
By lemma 2.4 z is an odd integer
For some integer a
z=2a+1
2z=2QRa+1)=1+3"
2Qa+1)—1=3"

(4a + 1) = 3Ky (11)
From (11) we geta =0, 2
Puta = 0in (11), we get
1=3k
Hence we get ky = 0, and hence eitherk =0ory =0
Fork =0,
(k,x,y,z) = (0,2m, ¢, 1), this is a solution, for any values of the non-negative
integers m, c. (12)

Fory =0, x = 2m, in (1) it becomes
(3k —1)?m +1 =22
This has no solution by lemma 2.1.

Puta=2 weget z=5,ky =2,
ie. (k,x,y,z) = (1,2m,2,5) or (k,x,y,z) = (2,2m,1,5)
Whenk =1,y =2,x =2m, in (4) we get,
2¥+32 =52
Solving this we get x = 4.
Therefore we get (k, x,y,z) = (1,4,2,5) is a solution. (13)

Fork =2,y =1and x = 2m, in (4) we get
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82™ +9 = 25
26m=24
em = 4,

Therefore m is not an integer and hence x = 2m is not an integer.
Therefore there is no integer solutionfork =2,y =1

Subcase-2.2.2: Suppose that x is an odd positive number.
Then, x = 2m + 1, for some integer m.
From (4),

(3k _ 1)2m+1 + (3k)y = 72

Subcase-2.2.2.1 Select two non-negative integers a, b such that 3¥ — 1 = a? + b.

Then from (14),
@B =22 - (3k-1)""(3k-1) =22 - (3 —1)"(a? +b)
(35) +b(3k —1)"" = 22 — (3% -1)*"(a?)
= [z - a(3k - l)m][z + a(3k - l)m]
Let [z —a(3k - 1)m] = (3* — 1)" for some non-negative integer w.
From (15) and (16),
|z+a(3 - 1)"] = [(3%) +b(3* - 1)""| (3 - 1)
=[(3*) (3¢ - 1) ™ +b(3* - 1)
Subtracting (16) from (17) we get
2a(3* - 1)" = [(3¢)" (3 = 1)+ b(3k — 1) ] - (3 - 1)"
= (3 —1)“[3(3* - 1) +b(3F - 1) - 1]
Then we must have
-0 = -1
2a = [39(3F — 1) 4 p(3K — 1) — 1]
Hence
m=u
2a=[3%(3* = 1) +b - 1]}
Thus 2a = [3(3% = 1) ™" + b — 1]
Then (2a — b + 1)(3% — 1)°™ = [3%7]
When k is an even integer,

3% = 1mod 4 and (3% —1)*™ = 0 mod 4
Then from (20) we get 0 = 1 mod 4 which is impossible, so no solution.

When k is an odd integer and m > 1,
(3* —1)*™ = 0mod 4 and 3% =3 mod 4
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Then from (20) we get 0 = 3 mod 4 which is impossible, so no solution.
Thus, fork > 1 and x > 1,y > 1, there is no integer solution for (4) in this case.

Subcase-2.2.2.2
Select two integers a, b such that 3* — 1 = a? — b.
Then from (12),

397 =z2— (3*-1)"(3 -1) =22 - (3*=1)""(®-h).
(35) —b(3k —1)"" = 22 — (3% -1)*"(a?)
= [z —a(3* - 1)m][z +a(3% - 1)m]

(21)

Let [z - a(3* - 1)"] = (3¢ - 1)" (22)

Let [z +a(3* — 1) = (3¢ - 1)° (23)
where u , v are non-negative integers such thatu < v.

Adding and subtracting (22) and (23), we get
2z=(3"-1)"+ (3" - 1)" = 3* - 1)*[(3* - 1) +1] (24)
2a(3% - 1)" = (3" - 1)" - (3* - 1)" = (3* - 1)"*|(3* - 1) - 1] (25)
2=(3k-1)"
From (24), L - [(3k B 1),,_u N 1] (26)
o 261 27)

2=[(3-1)"" +1]

From (26), we get k = 1,u = 1sothatz = 271 + 1.

From (25), we get 2a2™ = 2[2¥~1 — 1] then we must have m = 0,v = 2,a = 1 and
thenx =1,z=13

Usingk =1,x =1,z = 3in (14), we get

2+3Y=0.

This has no integer solution.

Thus there is no solution in this case.

Suppose (27) holds
Then 2= [(3" -1)""+ 1] which holds for u = v and using z = (3¥ — 1)" in (25),
we get
[—a(B" - 1)m] = 0, this implies k = 0 only.
Thus for k = 0, we get (k, x,y,z) = (0,2m + 1, ¢, 1) is a solution of (4), for any values
of the non-negative integers m, c,. (28)

From (12), (29) the quadruple (k, x,y,z) = (0, ¢y, c3, 1) is a solution of (4), where ¢4, c,
are non-negative integers.

4. Open problem
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In 2013, Chotchaisthit [6] investigated for the solutions of the Diophantine equation p* +
(p + 1)Y = z2%, where x, y, z are nonnegative integers and p is a Mersenne prime. But there
the case when p is not a Mersenne prime number is still an open problem. Hence the title
of this paper is an open problem.

5. Conclusion
In this work the Exponential Diophantine equation (3 — 1)* + (3%)Y = z? is investigated
for the non-negative integer solutions and it takes the following integer solutions and some
interesting observations agreeing the previous works are provided at the end.

1. The quadruple (k,x,y,z) = (0,cq,cy, 1) is a solution, where ¢y, c, are non-

negative integers.
2. (k,x, y, z)=(1,0,1,2),(1,3,0,3),(1,4,2,5).
3. (k,x,y,z) = (2n,1,0,3™), where n is a non- negative integer.

It is observed that k had never taken the odd positive integers such that k > 1 in the
solutions of (4).
So when Kk is an odd positive integer and k>1, the Exponential Diophantine equation (4)
has no solutions.

For k = 0, the equation (4) has infinitely many integer solutions.
For k = 1,the solutions found for (4) agree with (Suvarnamani, 2011) [4] and with
(Sroysang, 2013) [7].

For k = 2, (1,0,3) is the unique nonnegative integer solution for (4), so there is no solution
to (4) in positive integers x, y, z .This conclusion agrees with Burshtien [19].

For each even positive integer value of k, the Diophantine equation (4) has the unique
solution in nonnegative integers x, y, z and hence (4) has no solutions in positive integers
x,Y,Z.

This paper finds the solutions in the particular case when k = 2n in (4) which act as part
of solutions for the open problem suggested by Kulprapa Srimud and Suton Tadee [15] in
their Conclusion part given at the end.
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