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1. Introduction 

We consider only finite undirected graphs without loops or multiple edges. Notation and 

terminology not defined here follow those in [1]. Let G = (V(G), E(G)) be a graph with n 

vertices and e edges. We use δ and ∆ to denote the minimum and maximum degrees of a 

graph G, respectively. A subset S of V(G) in G is independent if there is no edge between 

any pair of distinct vertices in S. A maximum independent set in a graph G is an 

independent set of maximum cardinality. The independence number of a graph G, denoted 

α(G), is the size of a maximum independent set in G. For disjoint vertex subsets X and Y 

of V(G), we define E(X, Y) as {e : e = xy ϵ E, x ϵ X, y ϵ Y}.  We use Kr, s to denote a 

complete bipartite graph in which the two partition sets have cardinalities of r and s, 

respectively. A cycle C in a graph G is called a Hamilton cycle of G if C contains all the 

vertices of G. A graph G is called Hamiltonian if G has a Hamilton cycle. A path P in a 

graph G is called a Hamilton path of G if P contains all the vertices of G. A graph G is 

called traceable if G has a Hamilton path. In this note, we present sufficient conditions 

involving the maximum degree and the independence number for Hamiltonian graphs and 

traceable graphs. The main results are as follows. 

 

Theorem 1.1. Let G be a k-connected graph (k ≥ 2) with n ≥ 3 vertices, e edges, and 

maximum degree Δ. If e ≥ (n – k – 1) Δ, then G is Hamiltonian or G is Kk, k + 1.  

 

Theorem 1.2. Let G be a k-connected graph (k ≥ 1) with n ≥ 9 vertices, e edges, and  

maximum degree Δ. If e ≥ (n – k – 2) Δ, then G is traceable or G is Kk, k + 2. 
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2. Lemmas 

We will use the following results as lemmas in our proofs of Theorem 1 and Theorem 2.  

Lemma 2.1 and Lemma 2.2 below are from [2].     

 

Lemma 2.1 [2] .  Let G be a k-connected graph of order n ≥ 3. If α ≤ k, then G is 

Hamiltonian. 

 

Lemma 2.2 [2] .  Let G be a k-connected graph of order n. If α ≤ k + 1, then G is traceable. 

 

Lemma 2.3 below is from [4].  

 

Lemma 2.3 [4] .  Let G be a balanced bipartite graph of order 2n with bipartition (A, B). 

If d(x) + d(y) ≥ n + 1 for any x ∈ A and any y ∈ B with xy ∉ E, then G is Hamiltonian. 

 

Lemma 2.4 below is from [3].  

 

Lemma 2.4 [3]. Let G be a 2-connected bipartite graph with bipartition (A, B), where |A| 

≥ |B|. If each vertex in A has degree at least s and each vertex in B has degree at least t, 

then G contains a cycle of length at least 2min(|B|, s + t - 1, 2s - 2). 

 

3.  Proofs 

Proof of Theorem 1.1. Let G be a k-connected graph (k ≥ 2) with n ≥ 3 vertices, e edges, 

and the maximum degree Δ satisfying the conditions in Theorem 1.1. Suppose G is not 

Hamiltonian. Then we have that n ≥ 2δ + 1 ≥ 2k + 1 otherwise δ ≥ k ≥ n/2 and G is 

Hamiltonian. In addition, Lemma 2.1 implies that α ≥ k + 1. Let I be any maximum 

independent set in G. Then |I| = α < n. Thus 

∑ u ϵ I d(u) = |E(I, V – I)| ≤ ∑ v ϵ V - I d(v).   

        Since ∑ u ϵ I d(u) + ∑ v ϵ V - I d(v) = 2e, we have that 

∑ u ϵ I d(u) ≤ e  ≤ ∑ v ϵ V - I d(v).   

        Notice that d(v) ≤ Δ for each vertex v ϵ V – I. We have that  

(n – k – 1) Δ ≤ e ≤ ∑ v ϵ V - I d(v) ≤ (n –  α) Δ ≤ (n – k – 1) Δ. 

        Then  

(n – k – 1) Δ = e = ∑ v ϵ V - I d(v) = (n –  α) Δ = (n – k – 1) Δ. 

        Thus d(v) = Δ for each v ϵ V – I, |I| = α = k + 1, and ∑ v ϵ V - I d(v) = e which implies 

that ∑ u ϵ I d(u) = e and G is a bipartite graph with partition sets I and V - I.  

Since n ≥ 2k + 1, we have that |V - I| ≥ k. If |V - I| ≥ k + 2, then V - I is an independent 

set with size at least k + 2, contradicting to the fact that I is a maximum independent set 

in G with size k + 1. Thus                 

          |V - I| = k + 1 or |V - I| = k. If |V - I| = k + 1, then Lemma 2.3 implies that G is 

Hamiltonian, a contradiction. If |V - I| = k, then G is Kk, k + 1.  

               This completes the proof of Theorem 1.1.  

Proof of Theorem 1.2. Let G be a k-connected graph (k ≥ 1) with n ≥ 9 vertices, e edges,    

and the maximum degree Δ satisfying the conditions in Theorem 1.2. Suppose G is not   
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traceable. Then we have that n ≥ 2δ + 2 ≥ 2k + 2 otherwise δ ≥ k ≥ (n – 1)/2 and G is   

traceable. In addition, Lemma 2.2 implies that α ≥ k + 2. Let I be any maximum 

independent set in G. Then |I| = α < n. Thus 

 

∑ u ϵ I d(u) = |E(I, V – I)| ≤ ∑ v ϵ V - I d(v).   

              Since ∑ u ϵ I d(u) + ∑ v ϵ V - I d(v) = 2e, we have that 

∑ u ϵ I d(u) ≤ e  ≤ ∑ v ϵ V - I d(v).   

              Notice that d(v) ≤ Δ for each vertex v ϵ V – I. We have that  

(n – k – 2) Δ ≤ e ≤ ∑ v ϵ V - I d(v) ≤ (n –  α) Δ ≤ (n – k – 2) Δ. 

              Then  

(n – k – 2) Δ = e = ∑ v ϵ V - I d(v) = (n –  α) Δ = (n – k – 2) Δ. 

   Thus d(v) = Δ for each v ϵ V – I, |I| = α = k + 2, and ∑ v ϵ V - I d(v) = e which implies that  

       ∑ u ϵ I d(u) = e and G is a bipartite graph with partition sets I and V - I. Since n ≥ 2k + 

2,  we have that |V - I| ≥ k. If |V - I| ≥ k + 3, then V - I is an independent set with size at 

least k + 3, contradicting to the fact that I is a maximum independent set in G with size k 

+ 2. 

             Thus |V - I| = k + 2, |V - I| = k + 1, or |V - I| = k. If |V - I| = k + 2, then k ≥ 3 and 

Lemma 2.3 implies that G is Hamiltonian and thereby G is traceable, a contradiction. If |V 

- I| = k + 1, then k ≥ 3 and Lemma 2.4 implies that G has a cycle of length at least (n - 1) 

and thereby G is traceable, a contradiction. If |V - I| = k, then G is K k, k + 2.  

                   This completes the proof of Theorem 1.2.  

 

4.  Conclusion              
In this note, we present new sufficient conditions that involve the maximum degree and        

the independence number for Hamiltonian and traceable graphs. 
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