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Abstract. Singular boundary value problems (SBVPs) describe various models with 

applications in engineering and other areas. Generally, obtaining the analytic solutions of 

such kind of problems is a challenge due to the singularity involved in the governing 

equations. For this reason, numerical methods are very essential and of considerable 

importance.  Here, I proposed the numerical solution of SBVPs by the Galerkin method 

using Taylor wavelets.  The paper also provides illustrative examples to demonstrate the 

efficiency and precision of the method.  
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1. Introduction 

Mathematical modeling often employs differential equations, especially within the realms 

of science and engineering. Various challenges in mathematical physics frequently 

manifest as differential equations, which can be classified as either ordinary or partial 

differential equations [1]. Singular boundary value problems (SBVPs) occur frequently in 

applied mathematics and engineering. The numerical treatment of such type of problems 

has always been a complicated and difficult task due to the singular behaviour that occurs 

at a point. Hence, the singular boundary value problems have attracted much interest and 

have been investigated by many researchers. 

 “Wavelets” have been a very popular topic of conversations in several scientific 

and engineering gatherings these days. Some of the researchers have decided that 

wavelets are new basis for representing continuous functions, as a technique for time–

frequency analysis, and as a new mathematical subject. Of course, “wavelets” are a 

versatile tool with very rich mathematical content and great potential for applications. 

However, wavelet analysis is a numerical concept which allows one to represent a 
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function in terms of a set of base functions, called wavelets, which are localized both in 

location and scale [2]. 

The numerical approach facilitates the resolution of intricate problems using 

comparatively straightforward operations, offering a notable advantage over analytical 

methods due to its ease of implementation on contemporary computers. This advantage 

enables expedited solutions relative to those derived from analytical techniques. 

Galerkin’s method is encompassed within a broader spectrum of numerical strategies, and 

Wavelet analysis signifies an emerging and promising area in the realm of applied and 

computational numerical research.  

Recently, some of the researchers are solved various problems including SBVPs 

by numerical methods utilizing wavelets viz. Weighted Residual Method via Euler 

Wavelets [3], Wavelet based Galerkin Method [4], Hermite Wavelet Based Galerkin 

Method [5] etc. 

The wavelet-Galerkin method offers significant advantages over both the finite 

difference and finite element methods, making it a widely utilized approach in various 

scientific and engineering fields. The Galerkin method is widely recognized in the field 

of applied mathematics for its convenience and practicality [6 - 7]. 

The research introduces the Galerkin method involves representing the solution using 

Taylor wavelets with unknown coefficients, and using the properties of Taylor wavelets 

in combination with the Galerkin method to calculate these coefficients and obtain a 

numerical solution for the SBVPs. 

The outline of the paper is: Taylor wavelets and function approximation is given 

in section 2. In Section 3 is describes the Galerkin method based on Taylor wavelets for 

the numerical solution of SBVPs. The numerical implementation of the method is given 

in section 4. Finally, Section 5 the conclusions drawn from the proposed research. 

 
 

2. Taylor wavelets and function approximation 

Wavelets constitute a family of functions constructed from dilation and translation of a 

single function called the mother wavelet. When the dilation parameter a  and the 

translation parameter b  varies continuously, we have the following family of continuous 

wavelets [8 - 9]: 

 
1

2
, , , & 0a b

t b
t a a b R a

a
 

  
   

 
 

If we restrict the parameters ba &  to discrete values as 

0 0 0 0 0, ; 1, 0n na a b m b a a b      

we have the following family of discrete wavelets  

   
1

2
, 0 0 0 , ,n

n m t a a t mb n m Z     

where ,n m  form a wavelet basis for  RL2
. In particular, when 1&2 00  ba , then 

 ,n m t  forms an orthonormal basis.  

Taylor wavelets are defined as follows:  
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             (2.1) 

with     2 1m mT t m T t                                                                           (2.2) 

The coefficient 2 1m   is for normality, k  is any positive integer, 

11, 2 , 3 , ........, 2kn   is an argument and 
mT   0, 1,2 , 3........ 1m M   are the 

well known Taylor polynomials of oreder  m which can be defined by  m

mT t t . 

Taylor polynomials form a complete basis over the interval   0 , 1 .    

For instance, for 1k    and 3M  , we get the Taylor wavelet bases are as follows:  

1,0 ( ) 1t     ,      

1,1( ) 3t t     ,     

1,2

2( ) 5t t   and so on. 

Function approximation: 

Suppose   2( ) 0 , 1u t L  is expanded in terms of Fibonacci wavelets as: 

 ( ) , ,
1 0

y t c tn m n m
n m




  
 

                          (2.3) 

Truncating the above infinite series, we get  

 
12

( ) , ,
1 0

k M

y t c tn m n m
n m




  
 

                             (2.4) 

 

 

3. Method of solution  
Now, consider SBVP in the following form, 

     y p t y q t y f t                                (3.1) 

With boundary conditions           ,y a y b  
                               

(3.2) 

Here the functions      , &p t q t f t are analytic in  0 , 1t  and the 

functions    &P t Q t are not analytic functions at 0t  i.e. Singularity at 

0t  . 

Rewrite the Eq. (3.1) as        ( )R t y p t y q t y f t             (3.3) 

In cases where  xR  is the residual of Eq. (3.1) equals zero, the exact solution is 

identified and the boundary conditions are satisfied. 

The trial series solution of Eq. (3.1), within the range of  0 , 1 , meets the 

specified boundary conditions and can be expanded to a modified Taylor wavelet by 

introducing unknown coefficients as follows: 
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 
1 12

( ) , ,
1 0

k M

y t c tn m n m
n m


 

  
 

                     (3.4) 

The unknown coefficients
, 'n mc s , which are to be determined, 

The precision of the solution is improved by choosing higher degree Taylor wavelet 

polynomials. 

Find the second derivative w.r.t.  t  of Eq. (3.4) in order to obtain the values of 

, ,y y y  and then substitute these values into Eq. (3.3). Solve for the unknown 

coefficients , 'n mc s  by using weight functions as the assumed basis elements and 

integrating the boundary values along with the residual to achieve zero [10]. 

               i.e.                 
1

1,

0

0m t R t d t  , 0 , 1 , 2 , ........m 
 

We can obtain a set of linear algebraic equations, which can be solved to find the 

unknown coefficients. Once determined these unknowns and then substitute them into the 

trial solution i.e.  in  Eq. (3.4), which gives the numerical solution for Eq. (3.1). 

In order to calculate the precision of the TWGM on the test problems, the maximum 

absolute error as a measure of error and this is considered as: 

max max ( ) ( )exact numerE y t y t  ,  

( )exacty t  and ( )numery t  are exact and numerical solution. 
 

4. Numerical implementation 

Problem 4.1. Consider the second order differential equation of the form 

   
2 31

9 4 , 0 1y t t t t
t

y y                                  (4.1) 

With boundary conditions:     0 0 , 1 0y y                                      (4.2) 

Here,       2 3
9 4

1
, 1 & t t tp t q t f t

t
            

At    0,t p t  is not analytic.   Therefore, the given equation is SBVP. 

Now, the  Eq. (4.1) is implemented according to the method outlined in section 3 in the 

following manner: 

The residual of Eq. (4.1) can be written as:   

   2 3
9 4t y t t tt y yR t                              (4.3) 

Choosing the weight function    1w t t t   for Tayolr wavelet bases and they 

are satisfy the given boundary conditions Eq. (4.2), i.e.      t w t t ψ  

        1,01,0
( ) ( ) 1 1t t t t t t    ψ  

          1,1 1,1
( ) ( ) 1 3 1t t t t t t t    ψ       

          2

1,2 1,2
( ) ( ) 1 5 1t t t t t t t    ψ  
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Assuming the trail solution of Eq. (4.1) for   1k   and 2m   is given by 

     1 ,0 1,0 1,1 1,1 1,2 1, 2
( )y t c t c t c t  ψ ψ ψ                          (4.4) 

Then the Eq. (4.4) becomes           

       
    2

1,0 1,1

1,2

( ) 1 3 1

5 1

y t c t t c t t t

c t t t

    



 

    

  

2 2 3
1,0 1,1

3 4
1,2

( ) 3

5

y t c t t c t t

c t t

     



       (4.5) 

Differentiating Eq. (4.5) twice w.r.t. t  and substitute the values of  , ,y y y   in                        

Eq. (4.3), we get the residual of Eq. (4.1).    The “weight functions” are the same as the 

basis functions.  

By the weighted Galerkin method, consider the following: 

                       
1

0
1,

0
t R t d t

j
 ψ , 0 , 1, 2j                              (4.6) 

For 0 , 1, 2j   in Eq. (4.6),  

i.e.   

   

   

   

1, 0

1, 1

1, 2

1
0

0

1
0

0

1
0

0

t R t d t

t R t d t

t R t d t


 




 





ψ

ψ

ψ

                      (4.7) 

From equation (4.7), a system of algebraic equations with unknown coefficients, namely  

1,0
c , 

1,1
c and 

1,2
c .  By solving this system, obtained the values of 

1,0
0.01783c   , 

1,1
0.60841c  , and 

1,2
0.01818c   .  Substituting these 

values into Eq. (4.5) gives the numerical solution. The numerical solution and the 

absolute errors are compared in table 1, whereas the numerical solution is presented in 

figure 1 with the exact solution of Eq (4.1) 
2 3

( )y t t t   [3]. 

t 
Numerical solution 

Exact 

solution 
Absolute error 

FDM Ref [4] TWGM  FDM Ref [4] TWGM 

0.1 -0.014709 0.010673 0.007843 0.009000 2.37e-02 1.67e-03 1.16e-03 

0.2 -0.013726 0.033159 0.030849 0.032000 4.57e-02 1.16e-03 1.15e-03 

0.3 -0.002584 0.063290 0.062877 0.063000 6.56e-02 2.90e-04 1.23e-04 

0.4 0.015387 0.095881 0.095894 0.096000 8.06e-02 1.19e-04 1.06e-04 

0.5 0.036564 0.125034 0.124975 0.125000 8.84e-02 3.40e-05 2.50e-05 

0.6 0.056572 0.144429 0.143955 0.144000 8.74e-02 4.29e-04 4.50e-05 
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Table 1. Comparison of numerical solution and absolute error in relation to the exact 

solution for problem 4.1 

 
Figure 1. Comparison of numerical solution with exact solution of the problem 4.1. 

Problem 4.2. Next, consider another differential equation of the form 

                   
8 5 4 2

44 30 , 0 1y y t y t t t t t
t

             (4.8) 

With boundary conditions:     0 0 , 1 0y y                                         (4.9) 

Here,      
8 5 4 2

, & 44 30p t q t t f t t t t t
t

             

At    0,t p t  is not analytic.   Therefore, the given equation is SBVP. 

In section 3 and in the above problem, the values of 
1,0

0.00034c  , 

1,1
0.00097c    and 

1,2
0.44649c   are determined. The numerical solution is 

obtained by putting these values in Eq. (4.5).  In table 2, the numerical solution and the 

absolute errors are compared, and figure 2 gives the comparison of the numerical solution 

with the exact solution of Eq. (4.8) is 
4 3

( )y t t t  [11] depicted in figure 2.  

0.7 0.070066 0.147623 0.146981 0.147000 7.69e-02 6.23e-04 1.90e-05 

0.8 0.070568 0.128350 0.127871 0.128000 5.74e-02 3.50e-04 1.29e-04 

0.9 0.050294 0.080816 0.080789 0.081000 3.07e-02 1.84e-04 2.11e-04 
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Table 2. Numerical solution and absolute error are compared with  exact solution of 

problem 4.2. 

 
Figure 2. Numerical solution is presented with the exact solution of the problem 4.2. 

 
 

5. Conclusion 
 

The paper presents the numerical solution of SBVPs by Galerkin method using Taylor 

wavelets. The progress of new research in numerical analysis is significantly enhanced by 

this, proving advantageous for emerging researchers. The method introduced has been 

applied to some text problems, yielding results that are extremely adequate when 

t 
Numerical solution 

Exact 

solution 
Absolute error 

Ref [4] Ref [11] TWGM  Ref [4] Ref [11] TWGM 

0.1 -0.000823 -0.000937 -0.000883 -0.000900 7.70e-05 3.70e-05 1.70e-05 

0.2 -0.004844 -0.006426 -0.006389 -0.006400 1.56e-03 2.60e-05 1.10e-05 

0.3 -0.016861 -0.018899 -0.018901 -0.018900 2.04e-03 1.00e-06 1.00e-06 

0.4 -0.037304 -0.038381 -0.038418 -0.038400 1.10e-03 1.90e-05 1.80e-05 

0.5 -0.062986 -0.062482 -0.062514 -0.062500 4.86e-04 1.80e-05 1.40e-05 

0.6 -0.087854 -0.086406 -0.086404 -0.086400 1.45e-03 6.00e-06 4.00e-06 

0.7 -0.103744 -0.102944 -0.102909 -0.102900 8.44e-04 4.40e-05 9.00e-06 

0.8 -0.101131 -0.102477 -0.102395 -0.102400 1.27e-03 7.70e-05 5.00e-06 

0.9 -0.069880 -0.072976 -0.072888 -0.072900 3.02e-03 7.60e-05 1.20e-05 
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compared to other existing numerical methods. The data presented in the above tables 

and figures shows that: 

a) The proposed method gives numerical solutions that improve on those obtained by 

the finite difference method (FDM) and other existing methods (Ref [3] & [13]), 

close to the exact solution. 

b) The error obtained this method is in particular better in comparison with FDM and 

the existing methods (Ref [3] & [13]).  

Hence, utilising Taylor wavelets in the Galerkin method has been confirmed to be highly 

efficient in solving singular boundary value problems (SBVPs). 
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