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Abstract. This paper aims to further develop neutrosophic set theory as an extension of 

classical set theory, focusing on integrating the concept of indeterminacy and constructing 

mathematical frameworks. It introduces the neutrosophic number (𝑎 +  𝑏𝐼), a foundation 

for structures like neutrosophic algebra, sets, and operations. Previous works explored 

essential concepts such as neutrosophic subsets, operations, Cartesian products, functions, 

equivalence sets, and cardinality. The current study advances neutrosophic power sets and 

nth-neutrosophic power sets, building on Smarandache's pioneering work. It systematically 

examines hyperfunctions, extra hyperfunctions, super hyperfunctions, and extra-super 

hyperfunctions. The paper is structured into six sections, addressing key topics like 

classical and neutrosophic power sets, cardinality, hyperfunctions, and their extensions. 

This research contributes to the theoretical enrichment and future directions for 

neutrosophic set theory. 
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1. Introduction 
In 1965 [15], Zadeh introduced the concept of fuzzy set (FZ) as an extension of set theory 

(ST). At a later stage, specifically between 1983 and 1986, Atanassov introduced the 

concept of an intuitionistic fuzzy set (IFS) by introducing a non-degree membership 

function [10]. These works opened a new window for researchers to explore the various 

branches of mathematics based on set theories in light of the concepts of fuzzy set theory 

and intuitionistic fuzzy set theory. For example, but not limited to, the development of 

fuzzy matrix theory and applications [14, 19]. 

     In another development, in 1995, Smarandache introduced the concept of the 

neutrosophic set to address the concept of indeterminacy. Of course, the concepts of 

fuzziness, intuitive fuzziness, and indeterminacy are concepts that arise from the existence 
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of the universe around us, as well as from some cognitive issues that we do not have 

sufficient knowledge to judge.  

     In each scenario, this development relies on constructing a mathematical framework 

incorporating a codomain function for the degree membership function, encompassing 

degrees of falsehood, truth, and indeterminacy, along with operations defined on these 

degrees. This methodology forms a distinctive branch of neutrosophic set theory, as 

elaborated by various works. For instance, [18,22,23,24]. Another scenario involves 

generating a neutrosophic set from a classical set, utilizing the concept of 

indeterminacy. The objective of this paper, as well as preceding works, is to further 

develop and structure neutrosophic set theory as an extension of classical set theory, 

encompassing the concept of indeterminacy inherent to it.  
     This pivotal approach explored in neutrosophic algebra involves the concept of the 

neutrosophic number, denoted by,( 𝑎 +  𝑏𝐼 ),which has been utilized extensively in 

neutrosophic structures, such as neutrosophic linear algebra, groups, rings, and number 

theory, for example [4,5,13,16]. This neutrosophic number facilitates the representation 

and analysis of neutrosophic integers, real, and complex numbers, enabling the 

investigation of their algebraic properties.  

    The concept of the neutrosophic number inspired us; the idea was to construct a 

neutrosophic set theory that generates from classical sets within a comparable framework.    

    In previous works, we introduced foundational concepts essential to neutrosophic set 

theory, including universal neutrosophic sets, empty neutrosophic sets, neutrosophic 

subsets, set equality, complements, powers, and their respective properties.  

Furthermore, neutrosophic operations—such as union, intersection, difference, symmetric 

difference, and their generalizations—have been rigorously defined. Additional 

advancements include the neutrosophic Cartesian product, partial order relations, and 

corresponding properties [1,6,7,8]. 

     In [2,3], we studied neutrosophic functions and their classifications, compositions, 

inverses, and properties. In [9], we conducted a comparative study of hyperfunctions, extra 

hyperfunctions, super hyperfunctions, and extra-super hyperfunctions about the nth-

powerset. These explorations, proofs, and analyses aim to enrich the theoretical foundation 

of neutrosophic sets across three distinct types.  

    The present paper focuses on advancing neutrosophic power sets and nth-neutrosophic 

power sets in the context of the neutrosophic set theory of three types, extending the 

pioneering work of Smarandache [11, 25-29]. This study serves as a continuation of the 

previous construction of neutrosophic set theory while broadening its applicability.  

The paper is organized into six sections: 

1. Section One reviews the classical powerset and nth-powerset for any universal set, 

along with their properties under union and intersection. It also introduces the 

neutrosophic powerset and nth-neutrosophic powerset for three types of neutrosophic 

sets, supported by examples and analysis of their union and intersection properties. 

2. Section Two expands on neutrosophic equivalent sets, including theories, examples, 

and definitions of neutrosophic finite, countable, infinite, uncountable sets, 

cardinality, and transfinite numbers. This section opens avenues for future research in 

neutrosophic cardinality and transfinite numbers. 
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3. Section Three explores neutrosophic hyperfunctions and their applications to 

neutrosophic subsets, extending classical hyperfunctions (as inspired by Marty’s 1934 

work on hypergroups) [17]. 

4. Section Four introduces the concept of extra neutrosophic hyperfunctions, outlining 

their properties and role within neutrosophic set theory. 

5. Section Five discusses neutrosophic super-hyperfunctions and extra-hyperfunctions, 

analyzing their theoretical properties and implications. 

6. Section Six presents the neutrosophic super hyperfunction and a neutrosophic extra 

hyperfunction, with some properties according to the three types of neutrosophic set 

theory. 

This paper represents a significant step in developing neutrosophic set theory as a 

robust mathematical framework with diverse applications across algebra and set 

theory. 

 

2. Materials neutrosophic power-set and nth-neutrosophic power-set for a 
neutrosophic set of three types 

The section contains two parts. Part one reviews Power-Set and nth-Power-Set for any given 

universal set with union properties and the intersection of a power-indexed family of sets. 

Part two is devoted to the neutrosophic Power-Set and nth-neutrosophic Power-Set of 

neutrosophic set theory of three types, which includes illustration examples and their 

properties under the union of a neutrosophic power indexed family of neutrosophic sets 

and their intersection, respectively. 

 

1.2. Power-set and nth-power-set for a set     

Definition 1.1.2. [12,20,21,31] A set is a collection of well-defined objects called elements.  

 

Definition 2.1.2. [12,20,21,31] Let 𝐻 be a universal set. A set 𝛲(𝐻) = {𝑆: 𝑆 ⊆ 𝐻} is called 

the Power-Set of all subsets of a set 𝐻. 

 

Theorem 1.2.2. [12,20,21,31] If  𝐻 is a finite set of order 𝑛, then the order of  𝛲(𝐻) is 

equal to 2𝑛.  

Theorem 2.1.2. [12,20,21,31] Let  {𝐴𝛼∈𝐽} be a family of subset of 𝐻, then: 

1. ⋂ 𝑃(𝐴𝛼) = 𝑃𝛼∈𝐽 (⋂ 𝐴𝛼𝛼∈𝐽 ), and 

2. ⋃ 𝑃(𝐴𝛼) ⊂ 𝑃𝛼∈𝐽 (⋃ 𝐴𝛼𝛼∈𝐽 ). 

Definition 3.1.2. [12,20,21,31] Let 𝐻 be any set and 𝑛 be any positive integer, then the set 

𝑃𝑛(𝐻). The set of all n-elements of a subset of  𝐻 with its order n.  

 

Definition 4.1.2. [25-29] (nth -Power set) Let 𝐻 be a universe of discourse set, and 𝑛 ∈
ℤ+. Define the 𝑛𝑡ℎ -Power set of a set 𝐻 as follows: 

𝑃𝑛(𝐻) = 𝑃(𝑃𝑛−1(𝐻)),                                                                   

            = 𝑃(𝑃𝑛−1(𝑃𝑛−2(𝐻)) 

            = 𝑃(𝑃𝑛−1𝑃𝑛−2(𝑃𝑛−3(𝐻)) 

             ⋮ 
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            = 𝑃(𝑃𝑛−1𝑃𝑛−2𝑃𝑛−3⋯𝑃1(𝑃0(𝐻)), where 𝑃0(𝐻) = 𝐻, and 𝑃1(𝐻) = 𝑃(𝐻), with 

the decreasing order relation of subsets, such as:  𝑃0(𝐻) ⊂ 𝑃1(𝐻) ⊂ 𝑃2(𝐻)⋯𝑃𝑛−1 ⊂
𝑃𝑛. If we excluded the empty set from 𝑃(𝐻), Then 𝑃𝑛

∗(𝐻) = 𝑃𝑛(𝐻)\∅  defined in a 

similar way. The class 𝑃𝑛(𝐻) plays a crucial role in real-world problems. 

 

Theorem 3.1.2. [25-29] Let  𝐻 be a discrete finite set of 2 or more elements, and 𝑛 ≥  1 

is an integer. Then:𝑃0(𝐻) ⊂ 𝑃1(𝐻) ⊂ 𝑃2(𝐻)⋯𝑃𝑛−1 ⊂ 𝑃𝑛. For any subset A, we 

identify {A} with A. 

 

2.2. Neutrosophic power-set and neutrosophic nth-power-set for a set     

In this subsection, we developed the Power-Set and nth-Power set for a set to Neutrosophic 

Power-Set and Neutrosophic nth-Power-Set to study the new concepts related to a 

neutrosophic set of three types. 

 

Definition 1.2.2. [6] Let 𝑈 be a universal set, then: 

1. 𝑈1
𝑡[𝐼 ] = {𝑢1 + 𝑢2𝐼: 𝑢1, 𝑢2 ∈ 𝑈} is a universal neutrosophic set of type-1,  

2. 𝑈2
𝑡[𝐼] = {𝑢𝐼 ∪ {𝑢}: 𝑢 ∈ 𝑈} is a universal neutrosophic set of type-2, and 

3. 𝑈3
𝑡[𝐼 ] = {(𝑢1 + 𝑢2𝐼) ∪ {𝑢1}: 𝑢1, 𝑢2 ∈ 𝑈} is a universal neutrosophic set of type-

3, where 𝐼 is an indeterminacy 

Definition 2.2.2. [6] Let ∅ be the empty set, then: 

1. ∅1
𝑡 [𝐼] = {𝑢1 + 𝑢2𝐼: 𝑢1, 𝑢2 ∈ ∅} = ∅ is an empty neutrosophic set of type-1  

2. ∅2
𝑡 [𝐼] = {𝑢𝐼 ∪ {𝑢}: 𝑢 ∈ ∅} = ∅ is an empty neutrosophic set of type-2, and 

3. ∅3
𝑡 [𝐼] = {(𝑢1 + 𝑢2𝐼) ∪ {𝑢1}: 𝑢1, 𝑢2 ∈ ∅} = ∅ is an empty neutrosophic set of 

type-3, where 𝐼 is an indeterminacy. 

Definition 3.2.2. [6] Let 𝐻𝑖
𝑡[𝐼 ], 𝑖 = 1,2,3,  be three neutrosophic sets of three types, where 

𝐻 is any arbitrary classical set, either  𝐻 is a finite set, then 𝐻𝑖
𝑡[𝐼 ], 𝑖 = 1,2,3, are finite 

neutrosophic sets, the number of all neutrosophic elements is called the neutrosophic order 

and is denoted by 𝜓(𝐻i
𝑡[𝐼 ], 𝑖 = 1,2,3),  or 𝐻 is an infinite set, and consequently, 𝐻𝑖

𝑡[𝐼 ],
𝑖 = 1,2,3, have an infinite neutrosophic order. 

 

Definition 4.2.2. [6] Let 𝐻𝑖
𝑡[𝐼 ], 𝑖 = 1,2,3,  be three neutrosophic sets of three types, where 

𝐻 is any arbitrary classical set. The neutrosophic Power-Set of three types, written 

ℑ (𝐻𝑖
𝑡[𝐼]) and defined by ℑ (𝐻𝑖

𝑡[𝐼]) = {𝑁𝑖
𝑡[𝐼 ] : ⊆ 𝐻𝑖

𝑡[𝐼 ], 𝑖 = 1,2,3}.   
 

Definition 5.2.2. (nth-Neutrosophic Power-Set) Let 𝐻𝑖
𝑡[𝐼], 𝑖 = 1,2,3,  be three 

neutrosophic sets of three types, respectively. and 𝑛 ∈ ℤ+. Define the 𝑛𝑡ℎ - Neutrosophic 

Power-Set of sets  𝐻𝑖
𝑡[𝐼] as follows: 

ℑ𝑛 (𝐻𝑖
𝑡[𝐼]) = ℑ(ℑ𝑛−1(𝐻𝑖

𝑡[𝐼])),                                                                   

                   = ℑ(ℑ𝑛−1(ℑ𝑛−2(𝐻𝑖
𝑡[𝐼])) 

                   = ℑ (ℑ𝑛−1ℑ𝑛−2(ℑ𝑛−3(𝐻𝑖
𝑡[𝐼])) 
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                    ⋮ 

                  = ℑ (ℑ𝑛−1ℑ𝑛−2ℑ𝑛−3⋯ℑ1(ℑ0(𝐻𝑖
𝑡[𝐼])), where ℑ0(𝐻𝑖

𝑡[𝐼]) = 𝐻𝑖
𝑡[𝐼], and  

ℑ1(𝐻𝑖
𝑡[𝐼]) = ℑ(𝐻𝑖

𝑡[𝐼]), with the decreasing order relation of subsets such as: ℑ0(𝐻𝑖
𝑡[𝐼]) ⊂

ℑ1𝐻𝑖
𝑡[𝐼] ⊂ ℑ2(𝐻𝑖

𝑡[𝐼])⋯ℑ𝑛−1 ⊂ ℑ𝑛(𝐻𝑖
𝑡[𝐼]). If we exclude the empty set from ℑ(𝐻𝑖

𝑡[𝐼]), 

we get  ℑ𝑛
∗ (𝐻𝑖

𝑡[𝐼]) = ℑ𝑛(𝐻𝑖
𝑡[𝐼])\∅i

𝑡[𝐼]  defined in a similar way.  

 

Example 1.2.2. Let 𝐻1
𝑡[𝐼] = {𝑎 + 𝑎𝐼}, 𝐻2

𝑡[𝐼] = {𝑎, 𝑎𝐼}, and 𝐻3
𝑡[𝐼] = {𝑎, 𝑎 + 𝑎𝐼} be three 

neutrosophic sets of three types generated by 𝐻 = {𝑎} is a singleton set. Then the 0-

neutrosophic order of neutrosophic power sets 𝐻1
𝑡[𝐼], 𝐻2

𝑡[𝐼], and 𝐻3
𝑡[𝐼]are ℑ0(𝐻1

𝑡[𝐼]) =
{𝑎 + 𝑎𝐼}, ℑ0(𝐻2

𝑡[𝐼]) = {𝑎, 𝑎𝐼}, and ℑ0(𝐻3
𝑡[𝐼]) = {𝑎, 𝑎 + 𝑎𝐼}, respectively. Moreover, the 

1st-neutrosophic order of neutrosophic power sets of ℑ0(𝐻1
𝑡[𝐼]), ℑ0(𝐻2

𝑡[𝐼]), and ℑ0(𝐻3
𝑡[𝐼]) 

are given by: ℑ1(𝐻1
𝑡[𝐼]) = {

{𝑎 + 𝑎𝐼}

∅1
𝑡 [𝐼]

} , ℑ1(𝐻2
𝑡[𝐼]) = {

{𝑎, 𝑎𝐼}

∅2
𝑡 [𝐼]

}, and ℑ1(𝐻3
𝑡[𝐼]) =

{
{𝑎, 𝑎 + 𝑎𝐼}

∅3
𝑡 [𝐼]

}. While the 2nd-neutrosophic order of neutrosophic power of ℑ1(𝐻1
𝑡[𝐼]), 

ℑ1(𝐻2
𝑡[𝐼]), and ℑ1(𝐻3

𝑡[𝐼]) are represented by: ℑ2(𝐻1
𝑡[𝐼]) = {

{∅1
𝑡 [𝐼], {𝑎 + 𝑎𝐼}}

{∅1
𝑡 [𝐼]}, {{𝑎 + 𝑎𝐼}}

∅1
𝑡 [𝐼]

}, 

ℑ2(𝐻2
𝑡[𝐼]) = {

{∅2
𝑡 [𝐼], {𝑎, 𝑎𝐼}}

{∅2
𝑡 [𝐼]}, {{𝑎, 𝑎𝐼}}

∅2
𝑡 [𝐼]

}, and  ℑ2(𝐻3
𝑡[𝐼]) = {

{∅3
𝑡 [𝐼], {𝑎, 𝑎 + 𝑎𝐼}}

{∅3
𝑡 [𝐼]}, {{𝑎, 𝑎 + 𝑎𝐼}}

∅3
𝑡 [𝐼]

}. Also, the 

3rd-neutrosophic order of neutrosophic power sets of ℑ2(𝐻1
𝑡[𝐼]), ℑ2(𝐻2

𝑡[𝐼]), and ℑ2(𝐻3
𝑡[𝐼]) 

are displayed by: 

ℑ3(𝐻1
𝑡[𝐼]) = ℑ(ℑ2(𝐻1

𝑡[𝐼])) = ℑ({

{∅1
𝑡 [𝐼], {𝑎 + 𝑎𝐼}}

{∅1
𝑡 [𝐼]}, {{𝑎 + 𝑎𝐼}}

∅1
𝑡 [𝐼]

}), 

ℑ3(𝐻2
𝑡[𝐼]) = ℑ(ℑ2(𝐻2

𝑡[𝐼])) = ℑ({

{∅2
𝑡 [𝐼], {𝑎, 𝑎𝐼}}

{∅2
𝑡 [𝐼]}, {{𝑎, 𝑎𝐼}}

∅2
𝑡 [𝐼]

}), and 

ℑ3(𝐻3
𝑡[𝐼]) = ℑ(ℑ2(𝐻3

𝑡[𝐼])) = ℑ({

{∅3
𝑡 [𝐼], {𝑎, 𝑎 + 𝑎𝐼}}

{∅3
𝑡 [𝐼]}, {{𝑎, 𝑎 + 𝑎𝐼}}

∅3
𝑡 [𝐼]

}). 

To calculate  ℑ3(𝐻i
𝑡[𝐼]), and ℑ4(𝐻i

𝑡[𝐼]). We have the neutrosophic order of  ℑ3(𝐻i
𝑡[𝐼]) =

24 = 16 and ℑ4(𝐻i
𝑡[𝐼]) = 216 = 65536 elements by Theorem 1.2. In this case and 

beyond, we see the limitations of manual handling in classifying cases, and the role of the 

machine and algorithms comes to solve some of the required problems. If we exclude the 

empty set, we get  𝑃0
∗(𝐻) = {𝑎}. 

 

Observation. If 𝐻𝑖
𝑡[𝐼 ], 𝑖 = 1,2,3, is a finite with order 𝑛, i.e.,𝑂(𝐻𝑖

𝑡[𝐼 ]) = 𝑛, then the 

order O(ℑ (𝐻𝑖
𝑡[𝐼])) = 2𝑛. 
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Theorem 1.2.2. Let  {𝐴[𝐼]𝛼∈𝐽} be a family of neutrosophic subsets of three types of 𝐻𝑖
𝑡[𝐼], 

then: 

1. ⋂ ℑ(𝐴[𝐼]𝛼) = ℑ𝛼∈𝐽 (⋂ 𝐴[𝐼]𝛼𝛼∈𝐽 ), and 

2. ⋃ ℑ(𝐴[𝐼]𝛼) ⊂ ℑ𝛼∈𝐽 (⋃ 𝐴[𝐼]𝛼𝛼∈𝐽 ). 

Proof. (1) Let 𝐸[𝐼] ∈ ⋂ ℑ(𝐴[𝐼]𝛼) ⟺ ∀𝛼 ∈ 𝐽,𝛼∈𝐽 𝐸[𝐼] ∈ ℑ(𝐴[𝐼]𝛼)  

                                                             ⟺∀𝛼 ∈ 𝐽, 𝐸[𝐼] ⊆ 𝐴[𝐼]𝛼 

                                                             ⟺∀𝛼 ∈ 𝐽, 𝐸[𝐼] ⊆ ⋂ 𝐴[𝐼]𝛼𝛼  

                                                             ⟺∀𝛼 ∈ 𝐽, 𝐸[𝐼] ∈ ℑ(⋂ 𝐴[𝐼]𝛼𝛼 ).  

Hence, ⋂ ℑ(𝐴[𝐼]𝛼) = ℑ𝛼∈𝐽 (⋂ 𝐴[𝐼]𝛼𝛼∈𝐽 ). 

(2). Let 𝐸[𝐼] ∈ ⋃ ℑ(𝐴[𝐼]𝛼) ⟹ ∃ 𝛼 ∈ 𝐽, 𝐸[𝐼] ∈ ℑ(𝐴[𝐼]𝛼)  𝛼∈𝐽                                                      

                                                  ⟹ ∃ 𝛼 ∈ 𝐽, 𝐸[𝐼] ⊆ 𝐴[𝐼]𝛼 

                                                  ⟹ ∃ 𝛼 ∈ 𝐽, 𝐸[𝐼] ⊆ ⋃ 𝐴[𝐼]𝛼𝛼  

                                                  ⟹ ∃ 𝛼 ∈ 𝐽, 𝐸[𝐼] ⊆ ℑ(⋃ 𝐴[𝐼]𝛼𝛼 ).  
Therefore, 

 ⋃ ℑ(𝐴[𝐼]𝛼) ⊂ ℑ𝛼∈𝐽 (⋃ 𝐴[𝐼]𝛼𝛼∈𝐽 ).  
The following illustrates that the equality of the second part in the theorem does not hold 

or commute. 

 

Example 2.2.2. Let 𝐻1
𝑡[𝐼] = {

1 + 1𝐼, 1 + 2𝐼,
2 + 1𝐼, 2 + 2𝐼

} be a Neutrosophic Set of type-1 generated 

by 𝐻 = {1,2}, and its Neutrosophic Power-Set:  

ℑ(𝐻1
𝑡[𝐼]) =

{
 
 
 
 

 
 
 
 

{{1 + 1𝐼}, {1 + 2𝐼}, {2 + 1𝐼}, {2 + 2𝐼}}

{{1 + 1𝐼}, {2 + 1𝐼}, {2 + 2𝐼}}, {{1 + 2𝐼}, {2 + 1𝐼}, {2 + 2𝐼}}

{{1 + 1𝐼}, {1 + 2𝐼}, {2 + 1𝐼}}, {{1 + 1𝐼}, {1 + 2𝐼}, {2 + 2𝐼}},

{{1 + 2𝐼}, {2 + 1𝐼}}, {{1 + 2𝐼}, {2 + 2𝐼}}, {{2 + 1𝐼}, {2 + 2𝐼}},

{{1 + 1𝐼}, {1 + 2𝐼}}, {{1 + 1𝐼}, {2 + 1𝐼}}, {{1 + 1𝐼}, {2 + 2𝐼}},

{1 + 1𝐼}, {1 + 2𝐼}, {2 + 1𝐼}, {2 + 2𝐼},

∅1
𝑡 [𝐼], }

 
 
 
 

 
 
 
 

 

Let 𝐴[𝐼]1 = {1 + 1𝐼} and 𝐴[𝐼]2 = {2 + 2𝐼},  then ⋃ ℑ(𝐴[𝐼]𝛼)𝛼∈𝐽 = {∅1
𝑡 [𝐼], {1 +

1𝐼}, {2 + 2𝐼}} has three neutrosophic elements, while ℑ(⋃ 𝐴[𝐼]𝛼𝛼∈𝐽 ) = {∅1
𝑡 [𝐼], {1 +

1𝐼}, {2 + 2𝐼}, {{1 + 1𝐼}, {2 + 2𝐼}}} has four neutrosophic elements.  

 

3. Neutrosophic equivalent of sets 

Section three discusses the nature of the prime-specific principle's contribution to 

neutrosophic equivalent sets of three types. Including relevant theories and examples, with 

a definition of neutrosophic finite (or denumerable) set, countable neutrosophic infinite set, 

neutrosophic infinite set, uncountable neutrosophic set, neutrosophic cardinality, and 

neutrosophic transfinite number. This content represents an expansion of our work in [1-

3,6-8], and opens a new window for future work on the concepts of neutrosophic 

cardinality and neutrosophic transfinite number and their relationship to neutrosophic set 

theory of the three types. 

 



Neutrosophic Power-Set and Neutrosophic Hyper-Structure of Neutrosophic Set of Three 

Types 

131 

 

Definition 1.3. Let 𝑋𝑖
𝑡[𝐼] and 𝑌𝑖

𝑡[𝐼] be two neutrosophic sets of three types, then 𝑋𝑖
𝑡[𝐼] is 

called a neutrosophic equivalent to 𝑌𝑖
𝑡[𝐼], written 𝑋𝑖

𝑡[𝐼] ≅ 𝑌𝑖
𝑡[𝐼],  if there exists a 

neutrosophic function 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼]  ⟶  𝑌𝑖
𝑡[𝐼] which is one-to-one and onto (or bijection). In 

this case, 𝑋𝑖
𝑡[𝐼] and  𝑌𝑖

𝑡[𝐼] have the same neutrosophic cardinality. Also, we said that 𝑋𝑖
𝑡[𝐼] 

and 𝑌𝑖
𝑡[𝐼] are equipotent. Otherwise, we said that they are not equivalent (or equipotent), 

written 𝑋𝑖
𝑡[𝐼] ≇ 𝑌𝑖

𝑡[𝐼]. 
 

Theorem 1.3. Let 𝑋 ≅ Y be two equivalent classical sets, then  𝑋𝑖
𝑡[𝐼] ≅ 𝑌𝑖

𝑡[𝐼]. 
Proof: Assume that 𝑋 ≅ Y, then there exists    a classical function 𝑔 ∶ X ⟶ Y  which is a 

one-to-one and onto. Define a neutrosophic function 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼]  ⟶  𝑌𝑖
𝑡[𝐼]. According to 

definition 1.2 in [2].   

 

𝑓𝑛
1(𝑥) = 𝑓𝑛

1(𝑥1) + 𝑓𝑛
1(𝑥2𝐼)  

           = 𝑓𝑛
1(𝑥1) + 𝑓𝑛

1(𝑥2)𝑓𝑛
1(𝐼) 

            = 𝑔(𝑥1) + 𝑔(𝑥2)𝐼, where 𝑓𝑛
1(𝐼) = 𝐼,  𝑓𝑛

1(𝑥1) = 𝑔(𝑥1), 𝑓𝑛
1(𝑥2) = 𝑔(𝑥2),  

𝑓𝑛
2(𝑥) = {

𝑓𝑛
2(𝑥) = 𝑔(𝑥),                           

𝑓𝑛
2(𝑥𝐼) = 𝑓𝑛

2(𝑥)𝑓𝑛
2(𝐼) = 𝑔(𝑥)𝐼

 

𝑓𝑛
3(𝑥) = {

𝑓𝑛
3(𝑥1)                           

𝑓𝑛
3(𝑥1) + 𝑓𝑛

3(𝑥2)𝑓𝑛
3(𝑥𝐼)

 

where  𝑓𝑛
3(𝐼) = 𝐼, 𝑓𝑛

3(𝑥1) = 𝑔(𝑥1), 𝑓𝑛
3(𝑥2) = 𝑔(𝑥2). Now, by Theorems 1.2, 2.2, and 

3.2, the neutrosophic function 𝑓𝑛
𝑖  is one-to-one, moreover according to Theorems 4.2,5.2, 

and 6.2 the neutrosophic function 𝑓𝑛
𝑖 is an onto. Therefore 𝑋𝑖

𝑡[𝐼] ≅ 𝑌𝑖
𝑡[𝐼]. 

 

Theorem 2.3. The neutrosophic equivalent relation ≅ is a neutrosophic equivalence 

relation. 

Proof. (1) ≅ is a neutrosophic reflexive relation, since there exists a one-to-one and onto 

neutrosophic identity function idin
t  𝑋𝑖

𝑡[𝐼] ⟶ 𝑋𝑖
𝑡[𝐼] by Theorems 8.2, 9.2, and 10.2 in [2] 

(2). ≅ is a neutrosophic symmetric relation. Suppose that 𝑋𝑖
𝑡[𝐼] ≅ 𝑌𝑖

𝑡[𝐼], then there exists 

a bijection neutrosophic function 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼]  ⟶  𝑌𝑖
𝑡[𝐼] by Theorem 3.2 in [2]. Then there 

exists an inverse neutrosophic function 𝑓𝑛
𝑖−1:  𝑌𝑖

𝑡[𝐼] ⟶ 𝑋𝑖
𝑡[𝐼] is a one-to-one and onto 

neutrosophic function. Hence,  𝑌𝑖
𝑡[𝐼] ≅ 𝑋𝑖

𝑡[𝐼].  
(3).  ≅ is a neutrosophic transitive relation. Suppose that 𝑋𝑖

𝑡[𝐼] ≅ 𝑌𝑖
𝑡[𝐼] and 𝑌𝑖

𝑡[𝐼] ≅

𝑋𝑖
𝑡[𝐼]. 

Since 𝑋𝑖
𝑡[𝐼] ≅ 𝑌𝑖

𝑡[𝐼] ⟹ ∃ 𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼]  ⟶  𝑌𝑖
𝑡[𝐼] which is one-to-one and onto, also, 

Since 𝑌𝑖
𝑡[𝐼] ≅ 𝑋𝑖

𝑡[𝐼] ⟹ ∃ 𝑔𝑛
𝑖 : 𝑌𝑖

𝑡[𝐼]  ⟶  𝑍𝑖
𝑡[𝐼] which is one-to-one and onto. By theorem  

𝑔𝑛
𝑖 ∘ 𝑓𝑛

𝑖: 𝑋𝑖
𝑡[𝐼]  ⟶  𝑍𝑖

𝑡[𝐼] is a one-to-one and onto neutrosophic function, therefore 𝑋𝑖
𝑡[𝐼] ≅

𝑍𝑖
𝑡[𝐼], and consequently, the neutrosophic equivalent relation ≅ is a neutrosophic 

equivalence relation. 

 

Example 1.3. Let ℕ = {0,1,2, … } be the set of natural numbers. Then the neutrosophic 

natural numbers of type-1 are given by:  
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ℕ1
𝑡 [𝐼] = {

0, 0 + 𝐼, 0 + 2𝐼, 0 + 3𝐼, ⋯
1, 1 + 𝐼, 1 + 2𝐼, 1 + 3𝐼, ⋯
2, 2 + 𝐼 2 + 2𝐼 2 + 3𝐼, ⋯
⋮       ⋮              ⋮              ⋮  ⋯

}. 

And ℕ𝑒𝑣𝑒𝑛 = {2,4,6,… } be the set of even natural numbers. Then the even neutrosophic 

natural number of type-1 is given by:  

ℕ𝑒1
𝑡 [𝐼] = {

2 + 2𝐼, 2 + 4𝐼, 2 + 6𝐼,⋯
4 + 2𝐼, 4 + 4𝐼, 4 + 6𝐼,⋯
6 + 2𝐼, 6 + 4𝐼, 6 + 6𝐼,⋯

⋮

} 

Let us define 𝑔 ∶ ℕ ⟶ ℕ𝑒𝑣𝑒𝑛 such that  𝑔(𝑥) = 2𝑥, ∀ 𝑥 ∈ ℕ, where 𝑔 is one-to-one and 

onto. So, by  

 

Theorem 1.2. Deduce that 𝑓𝑛
1: ℕ1

𝑡 [𝐼]  ⟶ ℕ𝑒1
𝑡 [𝐼] is a one-to-one and onto neutrosophic 

function and consequently, ℕ1
𝑡 [𝐼] ≅ ℕ𝑒1

𝑡 [𝐼]. If we treat with ℕ1
𝑡 [𝐼]and ℕ𝑒1

𝑡 [𝐼]directly, it 

could be defined 

𝑓𝑛
1: ℕ1

𝑡 [𝐼]  ⟶ ℕ𝑒1
𝑡 [𝐼] such that 𝑓𝑛

1(𝑥) = 2𝑥, ∀ 𝑥 ∈ ℕ1
𝑡 [𝐼]. In this case, assume that 

𝑓𝑛
1(𝑥) = 𝑓𝑛

1(𝑦) ⟹ 2𝑥 = 2𝑦 

                       ⟹ 2(𝑥1 + 𝑥2𝐼) = 2(𝑦1 + 𝑦2𝐼) 
                       ⟹ (𝑥1 + 𝑥2𝐼) = (𝑦1 + 𝑦2𝐼) 

                      ⟹ 𝑥 = 𝑦 ⟹ 𝑓𝑛
1 is a one-to-one. If 𝑥 ∈ ℕ𝑒1

𝑡 [𝐼], take 𝑥 =
𝑦

2
, 𝑓𝑛

1(𝑥) =

𝑓𝑛
1 (

𝑦

2
) = 2

𝑦

2
= 𝑦. This means that 𝑓𝑛

1 is an onto and ℕ1
𝑡 [𝐼] ≅ ℕ𝑒1

𝑡 [𝐼].  

 

Definition 2.3. Let 𝑋1
𝑡[𝐼]  be a neutrosophic set of type-1, then 𝑋1

𝑡[𝐼] is called a finite 

neutrosophic set. If it is a neutrosophic empty set or equivalent to the following 

neutrosophic set: 

ℳ1
𝑡[𝐼] =

{
 
 

 
 
1 + 1𝐼, 1 + 2𝐼,⋯ ,1 + 𝑛𝐼
2 + 1𝐼, 2 + 2𝐼,⋯ ,2 + 𝑛𝐼
3 + 1𝐼, 3 + 2𝐼,⋯ ,3 + 𝑛𝐼

⋮
𝑛 + 1𝐼, 𝑛 + 2𝐼,⋯ , 𝑛 + 𝑛𝐼}

 
 

 
 

 

For some 𝑛 ∈ ℤ+. Then the neutrosophic order or cardinality, written by ψ(𝑋1
𝑡[𝐼]) = 𝑛. 

Otherwise, the neutrosophic set is called an infinite neutrosophic set. 

 

Definition 3.3. Let 𝑋2
𝑡[𝐼]  be a neutrosophic set of type-2, then 𝑋2

𝑡[𝐼] is called a finite 

neutrosophic set. If it is a neutrosophic empty set or equivalent to the following 

neutrosophic set: 

ℳ2
𝑡[𝐼] = {

1,1𝐼
2,2𝐼
⋮

𝑛, 𝑛𝐼

} 

For some 𝑛 ∈ ℤ+. The neutrosophic order or cardinality, written by ψ(𝑋2
𝑡[𝐼]) = 𝑛. 

Otherwise, the neutrosophic set is called an infinite neutrosophic set.  
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Example 2.3. Consider  𝑋2
𝑡[𝐼] = {

1,1𝐼
2,2𝐼

} and 𝑌2
𝑡[𝐼] = {

𝑎, 𝑎𝐼
𝑏, 𝑏𝐼

} are two neutrosophic sets of 

type-2. Then there exists a one-to-one and onto correspondence between them, 𝑓𝑛
2(1) =

𝑎, 𝑓𝑛
2(1𝐼) = 𝑓𝑛

2(𝑎𝐼), 𝑓𝑛
2(2) = 𝑏, and 

𝑓𝑛
2(2𝐼) = 𝑏𝐼. In this case, two finite neutrosophic sets are equivalent (or equipotent) if and 

only if they contain the same neutrosophic cardinality.  

 

Definition 4.3. Let 𝑋𝑖
𝑡[𝐼] be a neutrosophic set of three types, then 𝑋𝑖

𝑡[𝐼] is called a 

countably infinite neutrosophic set. If there exists a neutrosophic bijection 

𝑓𝑛
𝑖: 𝑋𝑖

𝑡[𝐼]  ⟶  ℤ+𝑖
𝑡
[𝐼].In this case, the neutrosophic transfinite number, written by 

ψ(𝑋2
𝑡[𝐼]) = ℵ.  

 

Definition 5.3. An infinite neutrosophic set that is not countably infinite is called an 

uncountable neutrosophic set. 

 

Definition 6.3. A countable neutrosophic set is either a finite neutrosophic set or a 

countably infinite neutrosophic set. 

 

4. Neutrosophic hyperfunction and inverse neutrosophic hyperfunction of one 

neutrosophic variable  
Section four is divided into two parts. In the first part, we explored the concept of the 

neutrosophic hyperfunction of a single variable across three types of neutrosophic sets, 

providing examples for better understanding. We also delved into neutrosophic 

hyperfunctions applied to neutrosophic subsets under various neutrosophic operations, 

including unions, intersections, differences, and subsets. This work builds upon classical 

hyperfunction, as discussed in our review paper [9]. The term 'Hyper' stems from Marty’s 

1934 work on Hypergroups, where he extended the codomain of binary operations from H 

to P(H).  

 

1.4. Neutrosophic hyperfunction of one neutrosophic variable 

Definition 1.1.4. Let 𝐻1
𝑡[𝐼] be a neutrosophic set of type-1 generated by 𝐻 and ℑ (𝐻1

𝑡[𝐼]) 
be a Neutrosophic Power-Set of 𝐻1

𝑡[𝐼]. A Function 𝑓ℎ
1: 𝐻1

𝑡[𝐼] ⟼ ℑ (𝐻1
𝑡[𝐼]) is called a 

Neutrosophic HyperFunction  of type-1, if for all 𝑥 ∈ 𝐻1
𝑡[𝐼], then there exists a 

neutrosophic subset 𝐴1
𝑡 [𝐼]𝛿∈𝐽 such that 𝑓ℎ

1(𝑥) = 𝐴1
𝑡 [𝐼]𝛿∈𝐽.  

 

Observation. The codomain of neutrosophic hyperfunction includes the empty set. If we 

consider ℑ∗ (𝐻1
𝑡[𝐼]) = ℑ (𝐻1

𝑡[𝐼])\∅1
𝑡 [𝐼]. Then the codomain of a hyperfunction 

𝑓ℎ
1: 𝐻1

𝑡[𝐼] ⟼ ℑ∗ (𝐻1
𝑡[𝐼]) does not include the neutrosophic empty set.  

Now, we will define the neutrosophic hyperfunction induced by the classical 

hyperfunction. 

 

Definition 2.1.4. Let 𝐻1
𝑡[𝐼] be a neutrosophic set of type-1 generated by 𝐻 and ℑ (𝐻1

𝑡[𝐼]) 
be a neutrosophic powerset of 𝐻1

𝑡[𝐼]. A Function 𝑓ℎ
1: 𝐻1

𝑡[𝐼] ⟼ ℑ (𝐻1
𝑡[𝐼]) is called a 
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neutrosophic hyperfunction generated by a classical hyperfunction 𝑔ℎ: 𝐻 ⟼ 𝑃(𝐻), if it 
satisfies the following property:  

𝑓ℎ
1(𝑥) = 𝑓ℎ

1((𝑥1 + 𝑥2𝐼)) 

                = 𝑓ℎ
1(𝑥1) + 𝑓ℎ

1(𝑥2𝐼) 
                         = 𝑓ℎ

1(𝑥1) + 𝑓ℎ
1(𝑥2)𝑓ℎ

1(I). 
where 𝑓ℎ

1(I) = 𝐼, 𝑓ℎ
1(𝑥1) = 𝑔

ℎ(𝑥1), and 𝑓ℎ
1(𝑥2) = 𝑔

ℎ(𝑥2). 
 

Example 1.1.4. Let 𝐻1
𝑡[𝐼] = {

1 + 1𝐼, 1 + 2𝐼,
2 + 1𝐼, 2 + 2𝐼

} be a neutrosophic set of type-1. The 

neutrosophic powerset  

ℑ(𝐻1
𝑡[𝐼]) =

{
 
 
 
 

 
 
 
 

{{1 + 1𝐼}, {1 + 2𝐼}, {2 + 1𝐼}, {2 + 2𝐼}}

{{1 + 1𝐼}, {2 + 1𝐼}, {2 + 2𝐼}}, {{1 + 2𝐼}, {2 + 1𝐼}, {2 + 2𝐼}}

{{1 + 1𝐼}, {1 + 2𝐼}, {2 + 1𝐼}}, {{1 + 1𝐼}, {1 + 2𝐼}, {2 + 2𝐼}},

{{1 + 2𝐼}, {2 + 1𝐼}}, {{1 + 2𝐼}, {2 + 2𝐼}}, {{2 + 1𝐼}, {2 + 2𝐼}},

{{1 + 1𝐼}, {1 + 2𝐼}}, {{1 + 1𝐼}, {2 + 1𝐼}}, {{1 + 1𝐼}, {2 + 2𝐼}},

{1 + 1𝐼}, {1 + 2𝐼}, {2 + 1𝐼}, {2 + 2𝐼}

∅1
𝑡 [𝐼] }

 
 
 
 

 
 
 
 

 

Consider 𝑔ℎ: 𝐻 ⟼ 𝑃(𝐻) such that 𝑔ℎ(1) = {2}, and 𝑔ℎ(2) = {1,2}. Then the 

neutrosophic hyperfunction of type one 𝑓ℎ
1: 𝐻1

𝑡[𝐼] ⟼ ℑ (𝐻1
𝑡[𝐼]) is given by:  

𝑓ℎ
1(1 + 1𝐼) = 𝑓ℎ

1(1) + 𝑓ℎ
1(1𝐼) 

                    = 𝑓ℎ
1(1) + 𝑓ℎ

1(1)𝑓ℎ
1(𝐼) 

                    = 𝑔ℎ(1) + 𝑔ℎ(1)𝑓ℎ
1(𝐼) 

                    = {2} + {2}I 
                    = {2} + {2𝐼} 
                   = {2 + 2𝐼}. 
𝑓ℎ
1(1 + 2𝐼) = 𝑓ℎ

1(1) + 𝑓ℎ
1(2𝐼) 

                   = 𝑓ℎ
1(1) + 𝑓ℎ

1(2)𝑓ℎ
1(𝐼) 

                   = 𝑔ℎ(1) + 𝑔ℎ(2)I 
                   = {2} + {1,2}𝐼 
                   = {2} + {1𝐼, 2𝐼} 
                  = {2 + 1𝐼, 2 + 2𝐼}. 
𝑓ℎ
1(2 + 1𝐼) = 𝑓ℎ

1(2) + 𝑓ℎ
1(1𝐼) 

                   = 𝑓ℎ
1(2) + 𝑓ℎ

1(1)𝑓ℎ
1(𝐼)  

                   = {1,2} + {2}𝐼 
                   = {1,2} + {2𝐼} 
                   = {1 + 2𝐼, 2 + 2𝐼}. 
𝑓ℎ
1(2 + 2𝐼) = 𝑓ℎ

1(2) + 𝑓ℎ
1(2𝐼) 

                   = 𝑓ℎ
1(2) + 𝑓ℎ

1(2)𝑓ℎ
1(𝐼) 

                   = {1,2} + {1,2}𝐼 
                   = {1,2} + {1𝐼, 2𝐼} 
                   = {1 + 1𝐼, 1 + 2𝐼, 2 + 1𝐼, 2 + 2𝐼} 
                   = 𝐻1

𝑡[𝐼].  
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According to definition 1.4, we can be defined 𝑓ℎ
1: 𝐻1

𝑡[𝐼] ⟼ ℑ (𝐻1
𝑡[𝐼]) by the following 

choice of ℑ (𝐻1
𝑡[𝐼]). 

𝑓ℎ
1(1 + 1𝐼) = {2 + 1𝐼}, 𝑓ℎ

1(1 + 2𝐼) = {{1 + 1𝐼}, {1 + 2𝐼}}, 

𝑓ℎ
1(2 + 1𝐼) = {1 + 2𝐼}, and 𝑓ℎ

1(2 + 2𝐼) = {{1 + 1𝐼}, {2 + 1𝐼}, {2 + 2𝐼}}. 
 

Definition 3.1.4. Let 𝐻2
𝑡[𝐼] be a neutrosophic set of type-2 generated by 𝐻 and ℑ (𝐻2

𝑡[𝐼]) 
be a neutrosophic powerset of 𝐻2

𝑡[𝐼]. A Function 𝑓ℎ
2: 𝐻2

𝑡[𝐼] ⟼ ℑ (𝐻2
𝑡[𝐼]) is called a 

neutrosophic hyperfunction  of type-2, if for all 𝑥 ∈ 𝐻2
𝑡[𝐼], then there exists a neutrosophic 

subset 𝐴2
𝑡 [𝐼]𝛿∈𝐽such that 𝑓ℎ

2(𝑥) = 𝐴2
𝑡 [𝐼]𝛿∈𝐽.  

 

Definition 4.1.4. Let 𝐻2
𝑡[𝐼] be a neutrosophic set of type-2 generated by 𝐻 and ℑ (𝐻2

𝑡[𝐼]) 
be a neutrosophic powerset of 𝐻2

𝑡[𝐼]. A Function 𝑓ℎ
2: 𝐻2

𝑡[𝐼] ⟼ ℑ (𝐻2
𝑡[𝐼]) is called a 

neutrosophic hyperfunction of type-2 generated by a classical hyperfunction 𝑔ℎ: 𝐻 ⟼
𝑃(𝐻), if it satisfies the following property: 

𝑓ℎ
2(𝑥) = {

𝑔ℎ  (𝑥), determinate − part                                         

𝑓ℎ
2(𝑥𝐼) = 𝑓ℎ

2(𝑥)𝑓ℎ
2(I), indeterminate − part       

 

where 𝑓ℎ
2(x) = 𝑔ℎ  (𝑥), 𝑓ℎ

1(𝐼) = 𝐼. 
 

Example 2.1.4. Let 𝐻2
𝑡[𝐼] = {

1, 1𝐼,
2, 2𝐼

}  be a neutrosophic set of type-2 generated by 𝐻 =

{1,2} with its neutrosophic powerset: 

ℑ(𝐻2
𝑡[𝐼]) =

{
 
 
 

 
 
 

{{1}, {1𝐼}, {2}, {2𝐼}}

{{1}, {1𝐼}, {2}}, {{1}, {1𝐼}, {2𝐼}}, {{1}, {2}, {2𝐼}}, {{1𝐼}, {2}, {2𝐼}}

{{1𝐼}, {2}}, {{1𝐼}, {2𝐼}}, {{2}, {2𝐼}},

{{1}, {1𝐼}}, {{1}, {2}}, {{1}, {2𝐼}},

{1}, {1𝐼}, {2}, {2𝐼}

∅2
𝑡 [𝐼] }

 
 
 

 
 
 

 

Consider 𝑔ℎ: 𝐻 ⟼ 𝑃(𝐻) such that 𝑔ℎ(1) = {2}, and 𝑔ℎ(2) = {1,2}. Then the 

neutrosophic hyperfunction of type-2  𝑓ℎ
2: 𝐻2

𝑡[𝐼] ⟼ ℑ(𝐻2
𝑡[𝐼]) is given by:  

𝑓ℎ
2(1) = 𝑓ℎ

2(1) = 𝑔ℎ(1) = {2}, 𝑓ℎ
2(1𝐼) = 𝑓ℎ

2(1)𝑓ℎ
2(𝐼) = 𝑔ℎ(1)𝑓ℎ

2(I) = {2}𝐼 =
{2𝐼}, 𝑓ℎ

2(2) = 𝑔ℎ(2) = {1,2}, and 𝑓ℎ
2(2𝐼) = 𝑓ℎ

2(2)𝑓ℎ
2(I) = 𝑔ℎ(2)𝑓ℎ

2(I) = {1,2}𝐼 =
{1𝐼, 2𝐼}. 
 

Definition 5.1.4. Let 𝐻3
𝑡[𝐼] be a neutrosophic set of type-3 generated by 𝐻 and ℑ (𝐻3

𝑡[𝐼]) 
be a neutrosophic powerset of 𝐻3

𝑡[𝐼]. A Function 𝑓ℎ
3: 𝐻3

𝑡[𝐼] ⟼ ℑ (𝐻3
𝑡[𝐼]) is called a 

neutrosophic hyperfunction of type-3,  

 

Definition 6.1.4. Let 𝐻3
𝑡[𝐼] be a neutrosophic set of type-3 generated by 𝐻 and ℑ (𝐻3

𝑡[𝐼]) 
be a neutrosophic powerset of 𝐻3

𝑡[𝐼].  A Function 𝑓ℎ
3: 𝐻3

𝑡[𝐼] ⟼ ℑ (𝐻3
𝑡[𝐼]) is called a 

Neutrosophic HyperFunction of type-3, if generated by a classical hyperfunction 𝑔ℎ: 𝐻 ⟼
𝑃(𝐻) such that 
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𝑓ℎ
3(𝑥) = {

𝑓ℎ
3(𝑥1)                   

𝑓ℎ
3(𝑥1) + 𝑓ℎ

3(𝑥2𝐼)
 

where 𝑓ℎ
3(𝑥1) = 𝑔

ℎ(𝑥1), 𝑓ℎ
3(𝑥2𝐼) = 𝑓ℎ

3(𝑥2) = 𝑔
ℎ(𝑥2)𝑓ℎ

3(𝐼) = 𝐼.,  

Example 4.1.4. Let 𝐻1
𝑡[𝐼] = {

ℎ1 + ℎ1𝐼, ℎ1 + ℎ2𝐼,⋯+ ℎ1 + ℎn𝐼
ℎ2 + ℎ1𝐼, ℎ2 + ℎ2𝐼,⋯+ ℎ2 + ℎn𝐼

⋮
ℎn + ℎ1𝐼, ℎn + ℎ2𝐼, ⋯+ ℎn + ℎn𝐼

} be a neutrosophic set 

of type one, which is   

generated by 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛} and ℑ(𝐻1
𝑡[𝐼]) be the neutrosophic powerset of 𝐻1

𝑡[𝐼]. 
Then the neutrosophic hyperfunction of type-1 𝑓ℎ

1: 𝐻1
𝑡[𝐼] ⟼ ℑ(𝐻1

𝑡[𝐼]) defined by 

𝑓ℎ
1(ℎ) = {

∅1
𝑡 [𝐼]. , 𝑖𝑓 ℎ ∉ 𝐻1

𝑡[𝐼]          

𝐻1
𝑡[𝐼] − {ℎ}, 𝑖𝑓 ℎ ∈ 𝐻1

𝑡[𝐼]
 

Or  𝑓ℎ
1(ℎ) = 𝐻1

𝑡[𝐼] − {ℎ}, for all ℎ ∈ 𝐻1
𝑡[𝐼] is a neutrosophic hyperfunction of type one. 

Also, if we consider  

 𝐻2
𝑡[𝐼] = {

ℎ1, ℎ1𝐼
ℎ2, ℎ2𝐼,
⋮

ℎn, ℎn𝐼

}, and  𝑓ℎ
2: 𝐻2

𝑡[𝐼] ⟼ ℑ(𝐻2
𝑡[𝐼]) such that 𝑓ℎ

2(ℎ) =

{
∅2
𝑡 [𝐼]. , 𝑖𝑓 ℎ ∉ 𝐻2

𝑡[𝐼]          

𝐻2
𝑡[𝐼] − {ℎ}, 𝑖𝑓 ℎ ∈ 𝐻2

𝑡[𝐼]
 

Or  𝑓ℎ
2(ℎ) = 𝐻2

𝑡[𝐼] − {ℎ}, for all ℎ ∈ 𝐻2
𝑡[𝐼] is a neutrosophic hyperfunction of type two. 

The following theorem gives us the main properties of neutrosophic subsets of 𝐻𝑖
𝑡[𝐼]  under 

neutrosophic operations, union, intersection, difference, and subset between any two 

subsets of 𝐻𝑖
𝑡[𝐼].    

 

Theorem 1.1.4. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types generated by a classical set 

𝐻 and ℑ(𝐻𝑖
𝑡[𝐼]) is a power neutrosophic set of them. If 𝑓ℎ

𝑖: 𝐻𝑖
𝑡[𝐼] ⟼ ℑ(𝐻𝑖

𝑡[𝐼]) is a 

neutrosophic hyperfunction and 𝐴𝑖
𝑡[𝐼], 𝐵𝑖

𝑡[𝐼] ⊂ 𝐻𝑖
𝑡[𝐼]. Then:  

1. 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) = 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∪ 𝑓ℎ

𝑖𝐵𝑖
𝑡[𝐼],  

2. 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊂ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∩ 𝑓ℎ

𝑖(𝐵𝑖
𝑡[𝐼]) 

3. 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) − 𝑓ℎ
𝑖(𝐵) ⊂ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼] − 𝐵𝑖

𝑡[𝐼]), and 

4. If 𝐴𝑖
𝑡[𝐼] ⊂ 𝐵𝑖

𝑡[𝐼], then 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) ⊂ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]).  

Proof. (1). Assume that 𝐸[𝐼]𝛾∈𝐽 ∈ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]), for some 𝛾. 

⟺ ∃ 𝑥 ∈ (𝐴𝑖
𝑡[𝐼] ∪ 𝐵𝑖

𝑡[𝐼]) such that 𝑓ℎ
𝑖(𝑥) = 𝐸[𝐼]𝛾∈𝐽 for some 𝛾. 

⟺ ∃ 𝑥 ∈ 𝐴𝑖
𝑡[𝐼] ∋ 𝑓ℎ

𝑖(𝑥) = 𝐸[𝐼]𝛾∈𝐽 for some 𝛾 ∨ ∃ 𝑥 ∈ 𝐵𝑖
𝑡[𝐼] ∋ 𝑓ℎ

𝑖(𝑥) =

𝐸[𝐼]𝛾∈𝐽 for some 𝛾. 

⟺ 𝐸[𝐼]𝛾∈𝐽 ∈ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) ∨ 𝐸[𝐼]𝛾∈𝐽 ∈ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]).  

⟺ 𝐸[𝐼]𝛾∈𝐽 ∈ (𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) ∪ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼])). Therefore 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) = 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∪

𝑓ℎ
𝑖𝐵𝑖
𝑡[𝐼]. 

(2).  Suppose that  𝐸[𝐼]𝛾∈𝐽 ∈ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]).  
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⟹ ∃ 𝑥 ∈ (𝐴𝑖
𝑡[𝐼] ∩ 𝐵𝑖

𝑡[𝐼]) ∋ 𝑓ℎ
𝑖(𝑥) = 𝐸[𝐼]𝛾∈𝐽 for all  𝛾. 

⟹ (∃ 𝑥 ∈ 𝐴𝑖
𝑡[𝐼] ∋  𝑓ℎ

𝑖(𝑥) = 𝐸[𝐼]𝛾∈𝐽 for all  𝛾)

∧ (∃ 𝑥 ∈ 𝐵𝑖
𝑡[𝐼] ∋  𝑓ℎ

𝑖(𝑥) = 𝐸[𝐼]𝛾∈𝐽 for all  𝛾) 

⟹ (𝐸[𝐼]𝛾∈𝐽 ∈ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼)]) ∧ (𝐸[𝐼]𝛾∈𝐽 ∈ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼)]) 

⟹ 𝐸[𝐼]𝛾∈𝐽 ∈ (𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼)] ∩ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼)]) 

⟹ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊂ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∩ 𝑓ℎ

𝑖(𝐵𝑖
𝑡[𝐼]). 

(3).  Let 𝐸[𝐼]𝛾∈𝐽 ∈ (𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) − 𝑓ℎ
𝑖(𝐵))  

⟹ 𝐸[𝐼]𝛾∈𝐽 ∈ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]), for some 𝛾 and 𝐸[𝐼]𝛾∈𝐽 ∉ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]), for all 𝛾 

⟹ ∃ 𝑥 ∈ 𝐴𝑖
𝑡[𝐼] ∋  𝑓ℎ

𝑖(𝑥) = 𝐸[𝐼]𝛾∈𝐽, for some 𝛾 and 𝑓ℎ
𝑖(𝑥) ∉ 𝑓ℎ

𝑖(𝐵𝑖
𝑡[𝐼]), for all 𝛾 

⟹ 𝐸[𝐼]𝛾∈𝐽  ∈ ( 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] − 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼])) 

⟹ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) − 𝑓ℎ
𝑖(𝐵) ⊂ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼] − 𝐵𝑖

𝑡[𝐼]). 

(4). Suppose that 𝐴𝑖
𝑡[𝐼] ⊂ 𝐵𝑖

𝑡[𝐼] and 𝐸[𝐼]𝛾∈𝐽 ∈  𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]. 

⟹ ∃ 𝑥 ∈ 𝐴𝑖
𝑡[𝐼] ∋  𝑓ℎ

𝑖(𝑥) = 𝐸[𝐼]𝛾∈𝐽, for some 𝛾 

⟹ ∃ 𝑥 ∈ 𝐵𝑖
𝑡[𝐼] ∋  𝑓ℎ

𝑖(𝑥) = 𝐸[𝐼]𝛾∈𝐽, for some 𝛾 

⟹ 𝐸[𝐼]𝛾∈𝐽 ∈ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]) 

⟹ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) ⊂ 𝑓ℎ(𝐵𝑖
𝑡[𝐼]). 

 

Corollary 2.1.4. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types generated by a classical set 

𝐻 and ℑ(𝐻𝑖
𝑡[𝐼]) is a power neutrosophic set of them and 𝐴𝑖

𝑡[𝐼], 𝐵𝑖
𝑡[𝐼] ⊂ 𝐻𝑖

𝑡[𝐼]. If  𝑔ℎ: 𝐻 ⟼

𝑃(𝐻) a classical hyperfunction, then 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) is a neutrosophic 

HyperFunction that satisfies the following properties: 

1. 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) = 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∪ 𝑓ℎ

𝑖𝐵𝑖
𝑡[𝐼],  

2. 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊂ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∩ 𝑓ℎ

𝑖(𝐵𝑖
𝑡[𝐼]), 

3. 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) − 𝑓ℎ
𝑖(𝐵) ⊂ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼] − 𝐵𝑖

𝑡[𝐼]), and 

4. If 𝐴𝑖
𝑡[𝐼] ⊂ 𝐵𝑖

𝑡[𝐼], then 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) ⊂ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]).  

Proof. By theorem 1.4 and theorem 1.3 in [11]. 

 

Example 5.1.4. Let 𝐻1
𝑡[𝐼] = {

𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼,
𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼

}, 𝐻2
𝑡[𝐼] = {

a, a𝐼,
b, b𝐼

} and 𝐻3
𝑡[𝐼] =

{
𝑎, 𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼,
𝑏, 𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼

} be the neutrosophic sets of three types generated by 𝐻,  𝐴1
𝑡 [𝐼] =

{𝑎 + 𝑎𝐼}, 𝐵1
𝑡[𝐼] = {𝑏 + 𝑏𝐼}, 𝐴2

𝑡 [𝐼] = {𝑎, 𝑎𝐼}, 𝐵2
𝑡[𝐼] = {𝑏, 𝑏𝐼}, 𝐴3

𝑡 [𝐼] = {𝑎, 𝑎 + 𝑎𝐼}, and 

𝐵3
𝑡[𝐼] = {𝑏, 𝑏 + 𝑏𝐼}. There are six neutrosophic subsets of  𝐻1

𝑡[𝐼],  𝐻2
𝑡[𝐼], and 𝐻3

𝑡[𝐼] 
respectively. Consider the classical hyperfunction  𝑔ℎ: 𝐻 ⟼ 𝑃(𝐻) such that 

𝑔ℎ(ℎ) = {
{𝑎}, 𝑖𝑓 ℎ ∈ 𝐻
∅, 𝑖𝑓 ℎ ∉ 𝐻

 

Then the neutrosophic hyperfunction generated by 𝑔ℎ  are given by: 

𝑓ℎ
1(𝐴1

𝑡 [𝐼]) = 𝑓ℎ
1(a + aI) = 𝑓ℎ

1(a) + 𝑓ℎ
1(a𝐼) 

                                        = 𝑓ℎ
1(a) + 𝑓ℎ

1(a)𝑓ℎ
1(𝐼) 
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                                        = 𝑔(a) + 𝑔(a)𝐼 
                                        = {𝑎} + {𝑎}𝐼 = {𝑎} + {𝑎𝐼} = {𝑎 + 𝑎𝐼} = 𝐴1

𝑡 [𝐼]. 
𝑓ℎ
1(𝐵1

𝑡[𝐼]) = 𝑓ℎ
1(b + bI) = 𝑓ℎ

1(b) + 𝑓ℎ
1(b𝐼) 

                                        = 𝑓ℎ
1(b) + 𝑓ℎ

1(b)𝑓ℎ
1(𝐼) 

                                        = 𝑔(b) + 𝑔(b)𝐼 
                                        = {𝑎} + {𝑎}𝐼 = {𝑎} + {𝑎𝐼} = {𝑎 + 𝑎𝐼}. 
𝑓ℎ
1(𝐴1

𝑡 [𝐼]) ∩ 𝑓ℎ
1(𝐵1

𝑡[𝐼]) = {𝑎 + 𝑎𝐼}, and 𝐴1
𝑡 [𝐼] ∩ 𝐵1

𝑡[𝐼] = ∅1
𝑡 [𝐼]. So,  

𝑓ℎ
1(𝐴1

𝑡 [𝐼] ∩ 𝐵1
𝑡[𝐼]) = 𝑓ℎ

1(∅1
𝑡 [𝐼]) = ∅1

𝑡 [𝐼]. That is 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊂ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∩

𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]). And, 

𝑓ℎ
2(𝐴2

𝑡 [𝐼]) = 𝑓ℎ
2({{a, aI}) = {𝑓ℎ

2(𝑎), 𝑓ℎ
2(𝑎𝐼)} 

                                         = {𝑓ℎ
2(𝑎), 𝑓ℎ

2(𝑎)𝑓ℎ
2(𝐼)} 

                                         = {𝑔(a) + 𝑔(a)𝐼} 

                                         = {{𝑎}, {𝑎}𝐼} = {{𝑎}, {𝑎𝐼}} = {𝑎, 𝑎𝐼}. 

𝑓ℎ
2(𝐵2

𝑡[𝐼]) = 𝑓ℎ
2({{b, bI}) = 𝑓ℎ

2(b), 𝑓ℎ
2(𝑏𝐼)} 

                                          = {𝑓ℎ
2(𝑏), 𝑓ℎ

2(𝑏)𝑓ℎ
2(𝐼)} 

                                          = {𝑔(𝑏), 𝑔(𝑏)𝑓ℎ
2(𝐼)} 

                                          = {{𝑎}, {𝑎}𝐼} = {{𝑎}, {𝑎𝐼}} = {𝑎, 𝑎𝐼}. We get, 

𝑓ℎ
2(𝐴2

𝑡 [𝐼]) ∩ 𝑓ℎ
2(𝐵2

𝑡[𝐼]) = {𝑎, 𝑎𝐼}, and 𝐴2
𝑡 [𝐼] ∩ 𝐵2

𝑡[𝐼] = ∅2
𝑡 [𝐼]. hence,  

𝑓ℎ
2(𝐴2

𝑡 [𝐼] ∩ 𝐵2
𝑡[𝐼]) = 𝑓ℎ

1(∅2
𝑡 [𝐼]) = ∅2

𝑡 [𝐼]. We note that,  

𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊂ 𝑓𝑛ℎ

𝑖 (𝐴𝑖
𝑡[𝐼]) ∩ 𝑓𝑛ℎ

𝑖 (𝐵𝑖
𝑡[𝐼]). Moreover, we can define neutrosophic 

hyperfunction without deducing from classical hyperfunction, such that 

𝑓ℎ
𝑖(h) = {

{𝑎 + 𝑎𝐼}, 𝑖𝑓 ℎ ∈ 𝐻𝑖
𝑡[𝐼]

∅𝑖
𝑡[𝐼], 𝑖𝑓 ℎ ∉ 𝐻𝑖

𝑡[𝐼]       
 

To get the same result. The next theorem represents the properties of the neutrosophic 

family of subsets of 𝐻𝑖
𝑡[𝐼].  

 

Theorem 3.1.4. Consider the neutrosophic hyperfunction 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟼ ℑ(𝐻𝑖
𝑡[𝐼]), then 

for any family {𝐴[𝐼]𝜌∈𝐽} of the neutrosophic subsets of  𝐻𝑖
𝑡[𝐼], we have  

1. 𝑓ℎ
𝑖(⋃ 𝐴[𝐼]𝜌𝜌∈𝐽 ) = ⋃ 𝑓ℎ

𝑖(𝐴[𝐼]𝜌)𝜌∈𝐽 ,  and  

2. 𝑓ℎ
𝑖(⋂ 𝐴[𝐼]𝜌𝜌∈𝐽 ) ⊂ ⋂ 𝑓ℎ

𝑖(𝐴[𝐼]𝜌)𝜌∈𝐽 . 

Proof. (1) Suppose that 𝐸[𝐼]𝜌∈𝐽 ∈ ⋃ 𝑓𝑛ℎ
𝑖 (𝐴[𝐼]𝜌)𝜌∈𝐽 ⟺ ∃𝜌 ∈ 𝐽, 𝐸[𝐼]𝜌∈𝐽 ∈  𝑓ℎ

𝑖(𝐴[𝐼]𝜌)  

                                                                                   

 ⟺ ∃𝜌 ∈ 𝐽, ℎ ∈ 𝐻𝑖
𝑡[𝐼] ∋  𝑓ℎ

𝑖(ℎ) = 𝐸[𝐼]𝜌∈𝐽. 

                                     ⟺ ∃𝜌 ∈ 𝐽, ℎ ∈ ⋃ 𝐴𝜌𝜌∈𝐽 ∋  𝑓ℎ
𝑖(ℎ) = 𝐸[𝐼]𝜌∈𝐽 

           ⟺ 𝑓ℎ
𝑖(ℎ) = 𝐸[𝐼]𝜌∈𝐽  ∈  𝑓ℎ

𝑖(⋃ 𝐴𝜌𝜌∈𝐽 ).  

Hence  

𝑓ℎ
𝑖(⋃ 𝐴[𝐼]𝜌𝜌∈𝐽 ) = ⋃ 𝑓ℎ

𝑖(𝐴[𝐼]𝜌)𝜌∈𝐽 .  

(2). Suppose that 𝐸[𝐼]𝜌∈𝐽 ∈ 𝑓ℎ
𝑖(⋂ 𝐴[𝐼]𝜌𝜌∈𝐽 ) ⟹ ∃ℎ ∈ ⋂ 𝐴[𝐼]𝜌𝜌∈𝐽 ∋  𝑓ℎ

𝑖(ℎ) = 𝐸[𝐼]𝜌∈𝐽 

                                                                       ⟹ ∃ℎ, ∀𝜌 ∈ 𝐴[𝐼]𝜌 ∋  𝑓ℎ
𝑖(ℎ) = 𝐸[𝐼]𝜌∈𝐽 

                                                                       ⟹ ∃ℎ, ∀𝜌, 𝐸[𝐼]𝜌∈𝐽 ∈ 𝑓ℎ
𝑖(𝐴[𝐼]𝜌) 
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                                                                       ⟹ 𝐸[𝐼]𝜌∈𝐽 ∈ ⋂ 𝑓ℎ
𝑖(𝐴[𝐼]𝜌)𝜌∈𝐽 . Therefore, 

𝑓ℎ
𝑖(⋂ 𝐴[𝐼]𝜌𝜌∈𝐽 ) ⊂ ⋂ 𝑓ℎ

𝑖(𝐴[𝐼]𝜌)𝜌∈𝐽 .  

Corollary 4.1.4. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types generated by a classical 

set 𝐻 and ℑ(𝐻𝑖
𝑡[𝐼]) is a power neutrosophic set of them and {𝐴[𝐼]𝜌∈𝐽} is any family of 

neutrosophic subsets of  𝐻𝑖
𝑡[𝐼].  

If 𝑔ℎ: 𝐻 ⟼ 𝑃(𝐻) a classical hyperfunction, then 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) is a 

neutrosophic hyperfunction that satisfies the following properties: 

1. 𝑓ℎ
𝑖(⋃ 𝐴[𝐼]𝜌𝜌∈𝐽 ) = ⋃ 𝑓ℎ

𝑖(𝐴[𝐼]𝜌)𝜌∈𝐽 ,  and  

2. 𝑓ℎ
𝑖(⋂ 𝐴[𝐼]𝜌𝜌∈𝐽 ) ⊂ ⋂ 𝑓ℎ

𝑖(𝐴[𝐼]𝜌)𝜌∈𝐽 . 

Proof. By theorem 3.4 and theorem 2.3 in [9]. 

 

Theorem 5.1.4. Let 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) be a neutrosophic hyperfunction and 

𝐴𝑖
𝑡[𝐼], 𝐵𝑖

𝑡[𝐼] ⊂ 𝐻𝑖
𝑡[𝐼], then 𝑓ℎ

𝑖: 𝐻𝑖
𝑡[𝐼] ⟼ ℑ(𝐻𝑖

𝑡[𝐼]) is a one-to-one neutrosophic 

hyperfunction if and only if, 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) = 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∩ 𝑓ℎ

𝑖(𝐵𝑖
𝑡[𝐼]). 

 

Proof. Let 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) be a neutrosophic hyperfunction and 𝐴𝑖

𝑡[𝐼], 𝐵𝑖
𝑡[𝐼] ⊂

𝐻𝑖
𝑡[𝐼] Suppose that 𝑓ℎ

𝑖 is a one-to-one neutrosophic hyperfunction. To prove that 

𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) = 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) ∩ 𝑓ℎ

𝑖(𝐵𝑖
𝑡[𝐼]). 

Let 𝐸[𝐼] ∈ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⟺ ∃𝑥 ∈ (𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ∋ 𝑓ℎ

𝑖(𝑥) =  𝐸[𝐼], 

  ⟺ (∃𝑥 ∈ 𝐴𝑖
𝑡[𝐼] ∋ 𝑓ℎ

𝑖(ℎ) = 𝐸[𝐼]) ∧ (∃𝑥 ∈ 𝐵𝑖
𝑡[𝐼] ∋ 𝑓ℎ

𝑖(ℎ) = 𝐸[𝐼]) 

  ⟺ (𝐸[𝐼] ∈ 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼])) ∧ (𝐸[𝐼] ∈ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]). ) 

 ⟺𝐸[𝐼] ∈ (𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) ∩ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼])). Conversely, suppose that  

 𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) = 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]𝐴) ∩ 𝑓ℎ

𝑖(𝐵𝑖
𝑡[𝐼]). To show that the neutrosophic 

hyperfunction 

 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) is a one-to-one. Let 𝑥, 𝑦 ∈ 𝐻𝑖

𝑡[𝐼] with 𝑥 ≠ 𝑦 such that 𝑓ℎ
𝑖(𝑥) =

𝑓ℎ
𝑖(𝑦) = 𝐸[𝐼]. Consider 𝐴𝑖

𝑡[𝐼] = 𝑥 and  𝐵𝑖
𝑡[𝐼] = 𝑦, we deduced that 

𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼]) ∩ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]) = 𝑓ℎ
𝑖(𝑥) ∩ 𝑓ℎ(𝑦) = 𝐸[𝐼] ≠ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼] ∩ 𝐵𝑖

𝑡[𝐼]) = 𝑓ℎ
𝑖(∅𝑖

𝑡[𝐼]). 

 

Definition 7.1.4. Let 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) be a neutrosophic hyperfunction and 

𝑔ℎ
𝑖 : ℑ(𝐻𝑖

𝑡[𝐼])𝐼 ⟼ ℑ2(𝐻𝑖
𝑡[𝐼]) be a neutrosophic hyper-function. Then, the neutrosophic 

composition of the neutrosophic hyperfunction:  

 𝑔ℎ
𝑖 ∘ 𝑓ℎ

𝑖: 𝐻𝑖
𝑡[𝐼] ⟼ ℑ2(𝐻𝑖

𝑡[𝐼]) such that (𝑔ℎ
𝑖 ∘ 𝑓ℎ

𝑖)(ℎ) = 𝑔ℎ (𝑓ℎ
𝑖(ℎ)) , ∀ ℎ ∈ 𝐻𝑖

𝑡[𝐼].   

 

Definition 8.1.4. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types, 𝑛 ∈ ℤ+, and ℑ𝑛(𝐻𝑖

𝑡[𝐼]) 

is 𝑛𝑡ℎ −Neutrosophic power set of a set 𝐻𝑖
𝑡[𝐼]. Then there exists a sequence of 

neutrosophic hyperfunctions 𝑓ℎ
𝑖
𝑗
, 𝑗 = 1,2,… , 𝑛.  
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𝑓ℎ
𝑖
1
: 𝐻𝑖

𝑡[𝐼] → ℑ(𝐻𝑖
𝑡[𝐼]), 𝑓ℎ

𝑖
2
: ℑ(𝐻𝑖

𝑡[𝐼]) ⟶ ℑ2(𝐻𝑖
𝑡[𝐼]), 𝑓ℎ

𝑖
3
: ℑ2(𝐻𝑖

𝑡[𝐼]) ⟶ ℑ3(𝐻𝑖
𝑡[𝐼]),…, 

and  

𝑓ℎ
𝑖
𝑛
: ℑ𝑛−1(𝐻𝑖

𝑡[𝐼]) ⟶ ℑ2(𝐻𝑖
𝑡[𝐼]) such that 

(𝑓ℎ
𝑖
𝑛
∘ 𝑓ℎ

𝑖
𝑛−1

∘ … ∘ 𝑓ℎ
𝑖
2
∘ 𝑓ℎ

𝑖
1
)(𝑥) = (𝑓ℎ

𝑖
𝑛
∘ 𝑓ℎ

𝑖
𝑛−1

∘ … ∘ 𝑓ℎ
𝑖
2
)(𝑓ℎ

𝑖
1
(𝑥)) 

                                                      = (𝑓ℎ
𝑖
𝑛
∘ 𝑓ℎ

𝑖
𝑛−1

∘ … ) (𝑓ℎ
𝑖
2
(𝑓ℎ

𝑖
1
(𝑥))) 

                                                      =⋮ 

                                                      = (𝑓ℎ
𝑖
𝑛
) (𝑓ℎ

𝑖
𝑛−1

(…𝑓ℎ
𝑖
2
(𝑓ℎ

𝑖
1
(𝑥)))) , ∀ 𝑥 ∈ 𝐻𝑖

𝑡[𝐼]. 

 

2.4. Inverse neutrosophic hyperfunction of one variable         

Definition 1.2.4. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types, and ℑ(𝐻𝑖

𝑡[𝐼]) be the 

power set of 𝐻𝑖
𝑡[𝐼]. A function  𝑓ℎ

𝑖−1: ℑ(𝐻𝑖
𝑡[𝐼]) ⟼ 𝐻𝑖

𝑡[𝐼] is called the inverse 

neutrosophic hyperfunction, if for all 𝐸[𝐼] ∈ ℑ(𝐻𝑖
𝑡[𝐼]), then there exists an element 𝑥 ∈

𝐻𝑖
𝑡[𝐼] such that 𝑓ℎ

𝑖−1(𝐸[𝐼]) = 𝑥. Also, we can define the inverse neutrosophic 

hyperfunction induced by the inverse hyperfunction.  

 

Definition 2.1.4. Let 𝐻𝑖
𝑡[𝐼] be a universal set, and ℑ(𝐻𝑖

𝑡[𝐼]) be the power set of 𝐻𝑖
𝑡[𝐼]. A 

function  𝑓ℎ
𝑖−1: ℑ(𝐻𝑖

𝑡[𝐼]) ⟼ 𝐻𝑖
𝑡[𝐼] is called the inverse neutrosophic hyperfunction 

induced by the inverse hyperfunction 𝑓ℎ
−1: 𝑃(𝐻) ⟼ 𝐻. 

 

Example 1.2.4. Let 𝐻1
𝑡[𝐼] and ℑ(𝐻1

𝑡[𝐼]) be a neutrosophic set of type one and its 

neutrosophic power-set, an example 1.3. Define some of the inverse neutrosophic 

hyperfunctions of type-1  𝑓ℎ
1−1: ℑ(𝐻1

𝑡[𝐼]) ⟼ 𝐻1
𝑡[𝐼] which are given by:  

 

1. 𝑓ℎ
1−1(𝐴[𝐼]) = {

𝐻1
𝑡[𝐼] − 𝐴[𝐼], 𝑖𝑓 𝐴[𝐼] ≠ ∅1

𝑡 [𝐼]

2 + 2𝐼, 𝑖𝑓 𝐴[𝐼] = ∅1
𝑡 [𝐼]            

 . Or 

2. 𝑓ℎ
1−1(𝐴[𝐼]) = {

𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑝ℎ𝑖𝑐 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐴[𝐼], 𝑖𝑓 𝐴[𝐼] ≠ ∅1
𝑡 [𝐼]

1 + 2𝐼, 𝑖𝑓 𝐴[𝐼] = ∅1
𝑡 [𝐼]                                                                    

. Or 

3. 𝑓ℎ
1−1(𝐴[𝐼]) = {

𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑝ℎ𝑖𝑐 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐴[𝐼], 𝑖𝑓 𝐴[𝐼] ≠ ∅1
𝑡 [𝐼]

1 + 1𝐼, 𝑖𝑓 𝐴[𝐼] = ∅1
𝑡 [𝐼]                                                                    

 

For all  𝐴[𝐼] ∈ ℑ(𝐻1
𝑡[𝐼]).  

 

Theorem 1.2.4. Consider an infinite neutrosophic set 𝐻𝑖
𝑡[𝐼] of three types generated by 

any infinite universal set 𝐻, then there exists a denumerable (finite) neutrosophic set 𝐴𝑖
𝑡[𝐼] 

such that  𝐴𝑖
𝑡[𝐼] ⊂ 𝐻𝑖

𝑡[𝐼]. 

Proof. Method-1. Let 𝐻𝑖
𝑡[𝐼] be an infinite neutrosophic set of three types generated by any 

infinite universal set 𝐻, and ℑ(𝐻𝑖
𝑡[𝐼]) is a neutrosophic power set of a set 𝐻𝑖

𝑡[𝐼]. By 

Theorem 1.2.3 in [11]. Then there is a denumerable set  𝐴 ⊂ 𝐻 by Theorems 3.1, 3.2, and 

3.3 in [11]. We have 𝐴𝑖
𝑡[𝐼] ⊂ 𝐻𝑖

𝑡[𝐼], 𝑖 = 1,2,3. Moreover, 𝐴 is a denumerable set, which 

implies that there exists a bijection mapping or function 𝑓𝑐: A ⟼ {1,2,3,… , 𝑛}, for some 

𝑛 ∈ ℤ+. According to Theorems 1.2, 2.2, and 3.2 in [14], we have 
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 𝑓1
𝑖: 𝐴𝑖

𝑡[𝐼] ⟼ {

ℎ1 + ℎ1𝐼, ℎ1 + ℎ2𝐼, ⋯+ ℎ1 + ℎn𝐼
ℎ2 + ℎ1𝐼, ℎ2 + ℎ2𝐼,⋯+ ℎ2 + ℎn𝐼

⋮
ℎn + ℎ1𝐼, ℎn + ℎ2𝐼,⋯+ ℎn + ℎn𝐼

}, 𝑓3
𝑖: 𝐴𝑖

𝑡[𝐼] ⟼ {

ℎ1, ℎ1𝐼
ℎ2, ℎ2𝐼,
⋮

ℎn, ℎn𝐼

}, and 

 

𝑓2
𝑖: 𝐴𝑖

𝑡[𝐼] ⟼ {

ℎ1, ℎ1 + ℎ1𝐼, ℎ1 + ℎ2𝐼, ⋯+ ℎ1 + ℎn𝐼
ℎ2, ℎ2 + ℎ1𝐼, ℎ2 + ℎ2𝐼,⋯+ ℎ2 + ℎn𝐼

⋮
ℎn, ℎn + ℎ1𝐼, ℎn + ℎ2𝐼,⋯+ ℎn + ℎn𝐼

} are neutrosophic bijections  

mappings. Hence 𝐴𝑖
𝑡[𝐼]is a neutrosophic denumerable subset of 𝐻𝑖

𝑡[𝐼], 𝑖 = 1,2,3.  
Method-2. By a similar argument to Theorem 1.2.3 in [9]. Let 𝐻𝑖

𝑡[𝐼] be an infinite 

neutrosophic set of three types generated by any infinite universal set 𝐻, and ℑ(𝐻𝑖
𝑡[𝐼]) is 

a neutrosophic power-set of a set 𝐻𝑖
𝑡[𝐼]. Define the inverse neutrosophic hyperfunction 

𝑓𝑛
𝑖−1: ℑ(𝐻𝑖

𝑡[𝐼]) ⟼ 𝐻𝑖
𝑡[𝐼] by 𝑓𝑛

𝑖−1(𝐻𝑖
𝑡[𝐼]) = 𝑥, where it depends on the types of the 

neutrosophic set and is complete by the same argument. 

 

Example 1.2.4. Let 𝐻1
𝑡[𝐼] and ℑ(𝐻1

𝑡[𝐼])be a neutrosophic set of type one and its 

neutrosophic power-set, an example 1.3. Define some of the inverse neutrosophic 

hyperfunctions of type-1  𝑓ℎ
1−1: ℑ(𝐻1

𝑡[𝐼]) ⟼ 𝐻1
𝑡[𝐼] which are given by: 

  

1. 𝑓ℎ
1−1(𝐴[𝐼]) = {

𝐻1
𝑡[𝐼] − 𝐴[𝐼], 𝑖𝑓 𝐴[𝐼] ≠ ∅1

𝑡 [𝐼]

2 + 2𝐼, 𝑖𝑓 𝐴[𝐼] = ∅1
𝑡 [𝐼]            

 . Or 

2. 𝑓ℎ
1−1(𝐴[𝐼]) = {

𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑝ℎ𝑖𝑐 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐴[𝐼], 𝑖𝑓 𝐴[𝐼] ≠ ∅1
𝑡 [𝐼]

1 + 2𝐼, 𝑖𝑓 𝐴[𝐼] = ∅1
𝑡 [𝐼]                                                                    

. 

Or 

3. 𝑓ℎ
1−1(𝐴[𝐼]) = {

𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑝ℎ𝑖𝑐 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐴[𝐼], 𝑖𝑓 𝐴[𝐼] ≠ ∅1
𝑡 [𝐼]

1 + 1𝐼, 𝑖𝑓 𝐴[𝐼] = ∅1
𝑡 [𝐼]                                                                    

 

For all  𝐴[𝐼] ∈ ℑ(𝐻1
𝑡[𝐼]).  

 

Theorem 1.2.4. Consider an infinite neutrosophic set 𝐻𝑖
𝑡[𝐼] of three types generated by 

any infinite universal set 𝐻, then there exists a denumerable (finite) neutrosophic set 𝐴𝑖
𝑡[𝐼] 

such that  𝐴𝑖
𝑡[𝐼] ⊂ 𝐻𝑖

𝑡[𝐼]. 
Proof. Method-1. Let 𝐻𝑖

𝑡[𝐼] be an infinite neutrosophic set of three types generated by any 

infinite universal set 𝐻, and ℑ(𝐻𝑖
𝑡[𝐼]) is a neutrosophic power set of a set 𝐻𝑖

𝑡[𝐼]. By 

Theorem 1.2.3 in [11]. Then there is a denumerable set  𝐴 ⊂ 𝐻 by Theorems 3.1, 3.2, and 

3.3 in [11]. We have 𝐴𝑖
𝑡[𝐼] ⊂ 𝐻𝑖

𝑡[𝐼], 𝑖 = 1,2,3. Moreover, 𝐴 is a denumerable set, which 

implies that there exists a bijection mapping or function 𝑓𝑐: A ⟼ {1,2,3,… , 𝑛}, for some 

𝑛 ∈ ℤ+. According to Theorems 1.2, 2.2, and 3.2 in [14], we have 
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 𝑓1
𝑖: 𝐴𝑖

𝑡[𝐼] ⟼ {

ℎ1 + ℎ1𝐼, ℎ1 + ℎ2𝐼, ⋯+ ℎ1 + ℎn𝐼
ℎ2 + ℎ1𝐼, ℎ2 + ℎ2𝐼,⋯+ ℎ2 + ℎn𝐼

⋮
ℎn + ℎ1𝐼, ℎn + ℎ2𝐼,⋯+ ℎn + ℎn𝐼

}, 𝑓3
𝑖: 𝐴𝑖

𝑡[𝐼] ⟼ {

ℎ1, ℎ1𝐼
ℎ2, ℎ2𝐼,
⋮

ℎn, ℎn𝐼

}, and 

 

𝑓2
𝑖: 𝐴𝑖

𝑡[𝐼] ⟼ {

ℎ1, ℎ1 + ℎ1𝐼, ℎ1 + ℎ2𝐼, ⋯+ ℎ1 + ℎn𝐼
ℎ2, ℎ2 + ℎ1𝐼, ℎ2 + ℎ2𝐼,⋯+ ℎ2 + ℎn𝐼

⋮
ℎn, ℎn + ℎ1𝐼, ℎn + ℎ2𝐼,⋯+ ℎn + ℎn𝐼

} are neutrosophic bijections  

 

mappings. Hence 𝐴𝑖
𝑡[𝐼]is a neutrosophic denumerable subset of 𝐻𝑖

𝑡[𝐼], 𝑖 = 1,2,3.  
Method-2. By a similar argument to Theorem 1.2.3 in [9]. Let 𝐻𝑖

𝑡[𝐼] be an infinite 

neutrosophic set of three types generated by any infinite universal set 𝐻, and ℑ(𝐻𝑖
𝑡[𝐼]) is 

a neutrosophic power set of a set 𝐻𝑖
𝑡[𝐼]. Define the inverse neutrosophic hyperfunction 

𝑓𝑛
𝑖−1: ℑ(𝐻𝑖

𝑡[𝐼]) ⟼ 𝐻𝑖
𝑡[𝐼] by 𝑓𝑛

𝑖−1(𝐻𝑖
𝑡[𝐼]) = 𝑥, where it depends on the types of the 

neutrosophic set and is complete by the same argument. 

 

5. Neutrosophic extra hyperfunction of one variable         

In this section, we introduce the neutrosophic extra hyperfunction of the neutrosophic set 

of three types, along with their properties, as an extension of the work in [9]. 

 

Definition 1.5. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types generated by any universal 

set 𝐻, and ℑ(𝐻𝑖
𝑡[𝐼]) is a neutrosophic power set of 𝐻𝑖

𝑡[𝐼]. A function  𝑓𝑒ℎ
𝑖 : ℑ(𝐻𝑖

𝑡[𝐼]) ⟼

ℑ(𝐻𝑖
𝑡[𝐼]) is called an extra neutrosophic hyperfunction, if for all 𝐴[𝐼]𝛾∈𝐽 ∈ ℑ(𝐻𝑖

𝑡[𝐼]), then 

there exists 𝛿,  𝐵[𝐼]𝛿∈𝐼 ∈ ℑ(𝐻𝑖
𝑡[𝐼]) such that 𝑓𝑒ℎ

𝑖 (𝐴[𝐼]𝛾∈𝐽) = 𝐵[𝐼]𝛿∈𝐼 . This extra 

neutrosophic hyperfunction includes the empty set. 

 

Observation. If ℑ∗(𝐻𝑖
𝑡[𝐼]) = ℑ(𝐻𝑖

𝑡[𝐼])\∅𝑖
𝑡[𝐼], then 𝑓𝑒ℎ

𝑖 : ℑ∗(𝐻𝑖
𝑡[𝐼]) ⟼ ℑ∗(𝐻𝑖

𝑡[𝐼]) does 

not contain a neutrosophic empty set. Also, we can define extra neutrosophic hyperfunction 

induced by neutrosophic hyperfunction.  

 

Definition 2.5. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types generated by any universal 

set 𝐻, and ℑ(𝐻𝑖
𝑡[𝐼]) is a neutrosophic power set of 𝐻𝑖

𝑡[𝐼]. If 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) is a 

neutrosophic hyperfunction, then  

𝑓𝑒ℎ
𝑖 : ℑ∗(𝐻𝑖

𝑡[𝐼]) ⟼ ℑ∗(𝐻𝑖
𝑡[𝐼]) is an extra hyperfunction induced by 𝑓ℎ

𝑖. The following 

theorem is a generalization of Theorem 1.4 in [9]. 

 

Theorem 1.5. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types generated by any universal set 

𝐻, and ℑ(𝐻𝑖
𝑡[𝐼]) is a neutrosophic power set of 𝐻𝑖

𝑡[𝐼]. If 𝑓ℎ
𝑖: 𝐻𝑖

𝑡[𝐼] ⟶ 𝐻𝑖
𝑡[𝐼] is a one-to-

one neutrosophic function, then  𝑓𝑒ℎ
𝑖 : ℑ(𝐻𝑖

𝑡[𝐼]) ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) is a one-to-one neutrosophic 

extra hyperfunction. 

 

Proof. There are two probabilities:  
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Probablity-1. If 𝐻𝑖
𝑡[𝐼] = ∅𝑖

𝑡[𝐼], 𝑖 = 1,2,3 then ℑ(𝐻𝑖
𝑡[𝐼]) = {∅𝑖

𝑡[𝐼]}. This means that the 

neutrosophic extra hyperfunction  𝑓𝑒ℎ
𝑖 : ℑ(𝐻𝑖

𝑡[𝐼]) ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) is a one-to-one (or 

neutrosophic bijective), because the domain of extra hyperfunction consists of one 

neutrosophic element.  

Probablity-2. Suppose that 𝐻𝑖
𝑡[𝐼] = ∅𝑖

𝑡[𝐼], then ℑ(𝐻𝑖
𝑡[𝐼]) has at least two neutrosophic 

elements. Let's say 𝐴𝑖
𝑡[𝐼] and 𝐵𝑖

𝑡[𝐼], and 𝐴𝑖
𝑡[𝐼] ≠ 𝐴𝑖

𝑡[𝐼], for any 𝑖 = 1,2,3. Then there exists 

a neutrosophic element 𝑥 ∈ 𝐴𝑖
𝑡[𝐼] and 𝑥 ∉ 𝐵𝑖

𝑡[𝐼] ⟹ 𝑓ℎ
𝑖(𝑥) ∈ 𝑓ℎ

𝑖(𝐴𝑖
𝑡[𝐼]) and 𝑓ℎ

𝑖(𝑥) ∉

𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]). Since𝑓ℎ
𝑖 is a one-to-one, we get 

𝑓ℎ
𝑖(𝐴𝑖

𝑡[𝐼])  ≠ 𝑓ℎ
𝑖(𝐵𝑖

𝑡[𝐼]), therefore, 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]) ≠ 𝑓𝑒ℎ
𝑖 (𝐵𝑖

𝑡[𝐼]). Hence 𝑓𝑒ℎ
𝑖  is a one-to-one. 

 

Theorem 2.5. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types, and  ℑ(𝐻𝑖

𝑡[𝐼]) be the 

neutrosophic power set of 𝐻𝑖
𝑡[𝐼]. If  𝑓ℎ

𝑖: 𝐻𝑖
𝑡[𝐼] ⟶ 𝐻𝑖

𝑡[𝐼] is a neutrosophic function, then the 

extra neutrosophic hyperfunction 𝑓𝑒ℎ
𝑖 : ℑ(𝐻𝑖

𝑡[𝐼]) ⟼ ℑ(𝐻𝑖
𝑡[𝐼]) preserving the elementary 

neutrosophic set operations as follows: 

1. 𝑓𝑒ℎ
𝑖 (⋃ 𝐴𝑖

𝑡[𝐼]𝜌𝜌∈𝐽 ) = ⋃ 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌)𝜌∈𝐽 ,  

2. 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌 −𝐵𝑖
𝑡[𝐼]𝜌) = 𝑓𝑒ℎ

𝑖 (𝐴𝑖
𝑡[𝐼]𝜌) − 𝑓𝑒ℎ

𝑖 (𝐵𝑖
𝑡[𝐼]𝜌). 

Proof (1). Suppose that   𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ 𝑓𝑒ℎ
𝑖 (⋃ 𝐴𝑖

𝑡[𝐼]𝜌𝜌∈𝐽 ) 

⟺ 𝐸𝑖
𝑡[𝐼]𝜌 ∈⋃𝐴𝑖

𝑡[𝐼]𝜌
𝜌∈𝐽

 

 ⟺ 𝐸𝑖
𝑡[𝐼]𝜌 ∈ 𝐴𝑖

𝑡[𝐼]𝜌, for some 𝜌 ∈ 𝐽. 

⟺ 𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌), for some 𝜌 ∈ 𝐽. 

⟺ 𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ ⋃ 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌)𝜌∈𝐽 , for some 𝜌 ∈ 𝐽. Hence, 

𝑓𝑒ℎ
𝑖 (⋃ 𝐴𝑖

𝑡[𝐼]𝜌𝜌∈𝐽 ) = ⋃ 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌)𝜌∈𝐽 .  

(2). Consider 𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ 𝑓𝑒ℎ
𝑖 (⋂ 𝐴𝑖

𝑡[𝐼]𝜌𝜌∈𝐽 ) 

⟺ 𝐸𝑖
𝑡[𝐼]𝜌 ∈⋂𝐴𝑖

𝑡[𝐼]𝜌
𝜌∈𝐽

 

⟺ 𝐸𝑖
𝑡[𝐼]𝜌 ∈ 𝐴𝑖

𝑡[𝐼]𝜌, for all 𝜌 ∈ 𝐽.  

 ⟺ 𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ ⋂ 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌)𝜌∈𝐽 , for all 𝜌 ∈ 𝐽. Therefore, 𝑓𝑒ℎ
𝑖 (⋂ 𝐴𝑖

𝑡[𝐼]𝜌𝜌∈𝐽 ) =

⋂ 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌)𝜌∈𝐽 .  

(3). Assume that  𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌 − 𝐵𝑖
𝑡[𝐼]𝜌) 

⟺ 𝐸𝑖
𝑡[𝐼]𝜌 ∈ (𝐴𝑖

𝑡[𝐼]𝜌 −𝐵𝑖
𝑡[𝐼]𝜌) 

 ⟺ 𝐸𝑖
𝑡[𝐼]𝜌 ∈ 𝐴𝑖

𝑡[𝐼]𝜌 ∧ 𝐸𝑖
𝑡[𝐼]𝜌  ∉ 𝐵𝑖

𝑡[𝐼]𝜌 

 ⟺ 𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ 𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌) ∧ 𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ 𝑓𝑒ℎ
𝑖 (𝐵𝑖

𝑡[𝐼]𝜌) 

⟺ 𝑓𝑒ℎ
𝑖 (𝐸𝑖

𝑡[𝐼]𝜌) ∈ (𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌) − 𝑓𝑒ℎ
𝑖 (𝐵𝑖

𝑡[𝐼]𝜌)). We deduced that, 

𝑓𝑒ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]𝜌 −𝐵𝑖
𝑡[𝐼]𝜌) = 𝑓𝑒ℎ

𝑖 (𝐴𝑖
𝑡[𝐼]𝜌) − 𝑓𝑒ℎ

𝑖 (𝐵𝑖
𝑡[𝐼]𝜌). 

 

 



Adel Al-Odhari 

144 

 

6. Neutrosophic super hyperfunction and neutrosophic extra super hyperfunction of 

one variable      

In this section, we introduce a neutrosophic super hyperfunction and a neutrosophic extra 

hyperfunction, along with some of their properties according to the neutrosophic set theory 

of three types. In future work, we aim to develop this research further. 

 

Definition 1.6. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types, and  ℑ𝑛(𝐻𝑖

𝑡[𝐼]) be the 

neutrosophic power set of 𝐻𝑖
𝑡[𝐼]. A function 𝑓𝑠ℎ

𝑖 , : 𝐻𝑖
𝑡[𝐼] ⟼ ℑ𝑛(𝐻𝑖

𝑡[𝐼]) is called a 

neutrosophic super hyperfunction, if for all ℎ ∈ 𝐻𝑖
𝑡[𝐼], then there exists a neutrosophic 

subset element 𝐸[𝐼] ∈ ℑ𝑛(𝐻𝑖
𝑡[𝐼]) such that the function 𝑓𝑠ℎ

𝑖 (ℎ) = 𝐸[𝐼], 𝑛 ≥ 2. 
 

Definition 2.6. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types, and  ℑ𝑛(𝐻𝑖

𝑡[𝐼]) be the 

neutrosophic power set of 𝐻𝑖
𝑡[𝐼]. If  𝑓𝑠: 𝐻 ⟼ 𝑃𝑛(𝐻) is a classical super-hyperfunction, 

then 𝑓𝑠ℎ
𝑖 , : 𝐻𝑖

𝑡[𝐼] ⟼ ℑ𝑛(𝐻𝑖
𝑡[𝐼]) is a neutrosophic super-hyperfunction induced by 𝑓𝑠.  

A function 𝑓𝑠ℎ
𝑖 , : 𝐻𝑖

𝑡[𝐼] ⟼ ℑ𝑛(𝐻𝑖
𝑡[𝐼]) is called a neutrosophic super-hyperfunction, if for 

all ℎ ∈ 𝐻𝑖
𝑡[𝐼], then there exists a neutrosophic subset element 𝐸[𝐼] ∈ ℑ𝑛(𝐻𝑖

𝑡[𝐼]) such that 

the function 𝑓𝑠ℎ
𝑖 (ℎ) = 𝐸[𝐼], 𝑛 ≥ 2. The following theorem  

 

Theorem 1.6. Let  𝑓𝑠ℎ
𝑖 , : 𝐻𝑖

𝑡[𝐼] ⟼ ℑ𝑛(𝐻𝑖
𝑡[𝐼]) be the neutrosophic super hyperfunction,  

𝐴𝑖
𝑡[𝐼], 𝐵𝑖

𝑡[𝐼] ⊂ 𝐻𝑖
𝑡[𝐼]. then: 

1. 𝑓𝑠ℎ
𝑖 (𝐴𝑖

𝑡[𝐼] ∪ 𝐵𝑖
𝑡[𝐼]) = 𝑓𝑠ℎ

𝑖 (𝐴𝑖
𝑡[𝐼]) ∪ 𝑓𝑠ℎ

𝑖 (𝐵𝑖
𝑡[𝐼]),  

2. 𝑓𝑠ℎ
𝑖 (𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊂ 𝑓𝑠ℎ

𝑖 (𝐴𝑖
𝑡[𝐼]) ∩ 𝑓𝑠ℎ

𝑖 (𝐵𝑖
𝑡[𝐼]), 

3. 𝑓𝑠ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]) − 𝑓𝑠ℎ
𝑖 (𝐵𝑖

𝑡[𝐼]) ⊂ 𝑓𝑠ℎ
𝑖 ((𝐴𝑖

𝑡[𝐼]) − (𝐵𝑖
𝑡[𝐼])), and 

4. If 𝐴𝑖
𝑡[𝐼] ⊂ 𝐵𝑖

𝑡[𝐼], then 𝑓𝑠ℎ
𝑖 (𝐴𝑖

𝑡[𝐼]) ⊂ 𝑓𝑠ℎ
𝑖 (𝐵𝑖

𝑡[𝐼]). 

Proof. By the same argument as Theorem 1.1.4. in [9]. The following theorem is a 

generalization of Theorem 2.5.  

 

Theorem 2.6. Let  𝑓𝑠ℎ
𝑖 , : 𝐻𝑖

𝑡[𝐼] ⟼ ℑ𝑛(𝐻𝑖
𝑡[𝐼]) be the neutrosophic super hyperfunction, for 

any neutrosophic family {𝐴[𝐼}𝜌∈𝐽} of the neutrosophic subsets of  𝐻𝑖
𝑡[𝐼], then:  

1. 𝑓𝑠ℎ
𝑖 (⋃ 𝐴[𝐼]𝜌𝜌∈𝐽 ) = ⋃ 𝑓𝑠ℎ

𝑖 (𝐴[𝐼]𝜌)𝜌∈𝐽 ,  and  

2. 𝑓𝑠ℎ
𝑖 (⋂ 𝐴[𝐼]𝜌𝜌∈𝐽 ) ⊂ ⋂ 𝑓𝑠(𝐴[𝐼]𝜌)𝜌∈𝐽 . 

  Proof. By a similar method to Theorem 2.5.  

 

Theorem 9.3. Let  𝑓𝑠ℎ
𝑖 , : 𝐻𝑖

𝑡[𝐼] ⟼ ℑ𝑛(𝐻𝑖
𝑡[𝐼]) be the neutrosophic super hyperfunction, and 

𝐴𝑖
𝑡[𝐼], 𝐵𝑖

𝑡[𝐼] ⊂ 𝐻𝑖
𝑡[𝐼]. Then 𝑓𝑠ℎ

𝑖  is a one-to-one neutrosophic super hyperfunction if and 

only if, 𝑓𝑠ℎ
𝑖 (𝐴𝑖

𝑡[𝐼] ∩ 𝐵𝑖
𝑡[𝐼]) ⊂ 𝑓𝑠ℎ

𝑖 (𝐴𝑖
𝑡[𝐼]) ∩ 𝑓𝑠ℎ

𝑖 (𝐵𝑖
𝑡[𝐼]). 

Proof. By a similar method to Theorem 2.3.  

 

Definition 6.3. Let 𝐻𝑖
𝑡[𝐼] be a neutrosophic set of three types, and  ℑ𝑛(𝐻𝑖

𝑡[𝐼]) be the 

neutrosophic power set of 𝐻𝑖
𝑡[𝐼].  Then  𝑓𝑒𝑠ℎ

𝑖 , : ℑ𝑚(𝐻𝑖
𝑡[𝐼]) ⟼ ℑ𝑛(𝐻𝑖

𝑡[𝐼]) is called a 
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neutrosophic extra super hyperfunction or a neutrosophic n-super hyperfunction, if for all 

𝐴[𝐼]𝛾∈𝐽 ∈ ℑ
𝑚(𝐻𝑖

𝑡[𝐼]), then there exists a neutrosophic element  

 𝐵[𝐼]𝛿∈𝐼 ∈ ℑ
𝑛(𝐻𝑖

𝑡[𝐼]) such that 𝑓𝑠ℎ
𝑖 (𝐴[𝐼]𝛾∈𝐽) = 𝐵[𝐼]𝛿∈𝐼 , where 𝑚, 𝑛 ≥0 .  

 

7. Conclusion  

In this article, we develop the power set and nth-power set into neutrosophic power sets 

and nth-neutrosophic power sets based on a neutrosophic set of three types. Moreover, we 

present neutrosophic equivalent sets, neutrosophic hyperfunctions, and inverse 

neutrosophic hyperfunctions, along with their properties. There are three types of 

neutrosophic functions: hyperfunction, neutrosophic super hyperfunction, and extra 

neutrosophic super hyperfunction. In future work, we will continue to extend these 

concepts and develop three kinds of neutrosophic sets. 
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