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Abstract. A mathematical model for the analysis of viscosity, elasticity and heat transfer 

effects between the bubble and the second-grade liquid was developed to investigate the 

propagation of nonlinear waves in second-grade liquids containing gas bubbles. The 

standard perturbation method obtains a two-dimensional nonlinear wave equation in the 

bubbly liquid. The approximate solution is obtained using a semi-analytical method. The 

results show that the shock wave dissipates faster under the influence of heat transfer, 

which dominates the other dissipating factors. while the dispersion of the wave is affected 

by the elasticity of the liquid. The result may be applied in biomedical and engineering 

applications.  
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1. Introduction 

It is known that motions in viscoelastic liquid with gas bubbles are important in many fields 

of engineering and industry, such as waste treatment, composites processing, boiling, 

bubble columns, cell imaging technique, and plastic foam processing [1, 2, 3]. Researchers 

like van Wijngaarden [5] developed a mathematical model for an incompressible and 

inviscid bubbly liquid flow. The effect of relative motion between bubbles and liquid in 

the relaxation process was considered in [5]. The heat transfer phenomenon and its effect 

between bubbles and viscous liquid were analysed by Watanabe & Prosperetti in [6] based 

on the equations derived in [7]. 

        Weakly non-linear wave equations in bubbly liquid flow were initially studied 

theoretically in a novel work by van Wijngaarden in [8], who derived the Korteweg–de–

Vries (KdV) and Korteweg–de–Vries–Burgers (KdV–Burgers) equations from the set of 

basic equations for bubbly liquid flows. Systematic studies of these complicated wave 

phenomena are therefore important for understanding physical behaviour and enhancing 

their applications. One of such important problems is the investigation of non-linear waves 

in bubble–viscoelastic liquid mixtures. The study of bubble in non-Newtonian fluids is still 
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at an early stage compared to the understanding of bubbles dynamics in Newtonian fluids. 

Korteweg–de Vries and Korteweg–de-Vries-Burgers equation, incorporating the effect of 

heat transfer was derived in [9]. Non-linear waves in a viscous liquid with gas bubbles in 

two and three-dimensional cases were considered in [10]. Linear wave analysis for liquid 

with small gas bubble fraction were studied in [11]. Including high order terms in the 

derivation of non-linear evolution equations with respect to the small parameter was 

obtained in [12] which gives an exact description of non-linear waves. 

        A numerical method that reproduces the measured waveform of a shock wave in a 

bubbly liquid has been presented in [13]. The effects of the viscoelasticity in slightly-

compressible bubbly viscoelastic liquid flow have been systematically investigated in an 

isothermal situation in [14]. Shock propagation in a polydisperse bubbly liquid was 

analysed in [15]. Momentum transfer from a shock wave to a bubbly medium is 

numerically simulated in [16]. Modelling bubble clusters in compressible liquids is 

considered in [17]. A theoretical analysis of thermal effect inside bubbles for weakly non-

linear pressure waves in bubbly liquids is considered in [18]. A detailed reviewed of shock 

wave models for bubble clusters in cavitating flows is treated in [19]. 

         Researches mainly focused on shock waves propagation in Newtonian liquids only. 

While it is established that most engineering and industrial mixtures, and liquids are non-

Newtonian in nature[20]. Bubbly viscoelastic liquid is important in depolymerisation, 

angioplasty, targeted gene delivery etc. Due to the differences between Newtonian and 

non-Newtonian flows, one cannot rely on Newtonian liquid to gain better understanding 

into such systems. Viscoelastic constitutive equations need to be considered in modelling 

liquid rheology and bubble dynamics accurately. 

        The aim of this paper is to study the long weakly non-linear waves in viscoelastic 

liquid with gas bubbles incorporating the effect of heat transfer between the bubble and 

liquid. Reduction perturbation method [21] will be used for the derivation of the non-linear 

wave equation. This work is organized as follows: Section 1 covers the introduction of the 

paper, Model formulation is presented in Section 2. Derivation of both the linear and non-

linear equations are carried out in Section 3 and 4. Result and discussion are presented in 

Section 5, conclusion is given in Section 6. 

 

2. Formulation 

In this study we considered the mixture with an averaged density, pressure and velocity. 

There are no interaction coalescence, formation and destruction of bubbles. The number of 

spherical bubbles in a unit mass of mixture is constant; 𝑁. There is no mass transfer 

between the bubble and liquid, and the buoyancy effect is not taking in to consideration. 

The pressure inside a bubble is uniformly and equally distributed. The inertia for the bubbly 

system is provided by liquid surrounding the bubble. The viscoelasticity of the liquid is 

considered at the boundary between the bubble and liquid. 

The equations for the derivation of two-dimensional non-linear wave equation in bubbly 

viscoelastic flow are [10]  

 
𝜕𝜌

𝜕𝑡
+ ∇ • (𝜌𝐯) = 0, (1) 

  

 𝜌 (
𝜕𝐯

𝜕𝑡
+ 𝐯 • ∇𝐯) + ∇𝑝 = 0, (2) 

 where 𝜌(𝑥, 𝑦, 𝑡) is the density of the bubble, 𝑝(𝑥, 𝑦, 𝑡) is the pressure of the mixture, 
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𝐯(𝑥, 𝑦, 𝑡) = (𝑣(1)(𝑥, 𝑦, 𝑡), 𝑣(2)(𝑥, 𝑦, 𝑡)) is the velocity of the mixture and ∇=
(𝜕/𝜕𝑥, 𝜕/𝜕𝑦) is gradient operator. 

  

2.1. Equation of motion of bubbles in an incompressible second grade liquid 

From the continuity equation, the velocity in radial form, 𝑣𝑟(𝑟, 𝑡) induced in the liquid 

around the bubble is  

 𝑣𝑟(𝑟, 𝑡) =
𝑅2(𝑡)�̇�(𝑡)

𝑟2 . (3) 

The dot represents derivative with respect to time. The radial momentum equation in 

viscoelastic liquid is [22]  

 𝜌𝑙 (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
) = −

𝜕𝑝

𝜕𝑟
+

𝜕𝜏𝑟𝑟

𝜕𝑟
+

2𝜏𝑟𝑟−𝜏𝜃𝜃−𝜏𝜙𝜙

𝑟
, (4) 

where 𝜌𝑙 is the liquid density, and 𝑝 is the total pressure, 𝜏𝜃𝜃, 𝜏𝜙𝜙 and 𝜏𝑟𝑟 are stress 

components of the liquid. Assuming 𝜏𝑟𝑟 = −𝜏𝜃𝜃 − 𝜏𝜙𝜙, substituting into (4) enables us to 

write the bubble dynamics equation as  

 (𝑅�̈� +
3

2
�̇�2) =

1

𝜌𝑙
(𝑝𝑙 − 𝑝0 + ∫

∞

𝑟
(

𝜕𝜏𝑟𝑟

𝜕𝑟
+

3𝜏𝑟𝑟

𝑟
) 𝑑𝑟). (5) 

 The gas pressure inside the bubble and the pressure outside the bubble are related by the 

equation [23]  

 𝑝𝑙 = 𝑝𝑔 −
2𝜎

𝑅
+ 𝜏𝑟𝑟(𝑅) (6) 

where 𝑅 = 𝑅(𝑥, 𝑦, 𝑡) is the bubble radius, 𝑝𝑔(𝑥, 𝑦, 𝑡) is the pressure of the gas, 𝑥 and 𝑦 are 

coordinates and 𝑡 is time, 

𝜎 is the surface tension. The mixture density can be expressed as [24]  

 𝜌 = 𝜌𝑙(1 − 𝛼) + 𝛼𝜌𝑔 ,        𝛼 = 𝑉𝜌,    𝑉 =
4

3
𝜋𝑁𝑅3, (7) 

 where 𝜌𝑙 , 𝜌𝑔, 𝜌 are densities of the liquid, gas bubble and mixture respectively, 𝛼 is the 

gas volume fraction in the unit mass of the mixture. 

        A second grade viscoelastic liquid is considered in this work, which has applications 

in science and engineering[25]. It is give as  

 𝜏𝑟𝑟 = 𝜇𝐴1 + 𝜆1𝐴2 + 𝜆2𝐴1
2, (8) 

 where  

 𝐴1 = 𝐷 + 𝐷𝑇 ,    𝐴2 =
𝑑𝐴1

𝑑𝑡
+ 𝐴1𝐷 + 𝐷𝑇𝐴1,     

 𝐷 =
𝜕𝑣𝑟

𝜕𝑟
,    

𝑑𝐴1

𝑑𝑡
=

𝜕𝐴1

𝜕𝑡
+ 𝑣𝑟. ∇, 

 and 𝐴1 and 𝐴2 are the Rivlin–Ericksen tensors, The first term is Newtonian liquid, while 

second term represent the non-linear property of a purely viscous liquid. The memory 

effects of the external phase is contained in the last term, which represents the viscoelastic 

nature of the liquid. 𝜆1, 𝜆2, 𝜇 are the relaxation, retardation times and dynamic viscosity of 

the liquid. Substituting (6) and (8) into (5) with the viscoelastic effect only at the bubble 

boundary, we have  

 𝜌𝑙 (𝑅�̈� +
3

2
�̇�2) = 𝑝𝑔 − 𝑝0 −

2𝜎

𝑅
− 𝜇

4�̇�

𝑅
+ 𝜆1 (

6�̇�2

𝑅2 −
4�̈�

𝑅
) + 𝜆2

8�̇�2

𝑅2 . (9) 

 The heat transfer equation is [26]  

 
𝑑𝑝𝑔

𝑑𝑡
+

3𝛾𝑝𝑔

𝑅
�̇� +

3(𝛾−1)

𝑅
𝑞 = 0, (10) 

 where  

 𝑞 = Nu𝜛𝑔
𝑇𝑔−𝑇0

2𝑅
,        

𝑇𝑔

𝑇0
=

𝑝𝑔

𝑝0
(

𝑅

𝑅0
)

3
, (11) 
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 Nu = {
√Pe  𝑓𝑜𝑟 Pe ≥ 100
100  𝑓𝑜𝑟 Pe < 100,

 (12) 

where Nu is the Nusselt number characterizing the inter-phase heat transfer,Pe is the Peclet 

number, 𝑇𝑔 is the absolute temperature of the gas in the bubble, 𝑇0 is he initial temperature 

in the liquid, 𝛾 is a polytropic exponent, 𝜛𝑔 is the adiabatic indexes for the gas, 𝑞 is the 

heat transfer rate or heat flux from liquid to gas bubble per unit area of the phase interface 

respectively. Let the deviation of the bubble radius from the unperturbed radius be small, 

that is  

 𝑅(𝑥, 𝑦, 𝑡) = 𝑅0 + 𝜑(𝑥, 𝑦, 𝑡),    𝑅0 = constant (13) 

where |𝜑(𝑥, 𝑦, 𝑡)| < 𝑅0, and 𝑅0 is the radius of the bubble in the unperturbed state. The 

averaged density of the mixture; (7) is expressed by the following relation [27]  

 𝜌 =
𝜌𝑙

1−𝑉𝜌𝑔+𝑉𝜌𝑙
,        𝛼 = 𝑉𝜌,    𝑉 =

4

3
𝜋𝑁𝑅3. (14) 

 The series expansion of (14) using (13) up to order 𝜑2(𝑥, 𝑦, 𝑡) is  

 𝜌 = 𝜌0 − 𝛾1𝜑(𝑥, 𝑦, 𝑡) + 𝛾2𝜑(𝑥, 𝑦, 𝑡)2, (15) 

 𝜌0 =
𝜌𝑙

(1+𝑉0𝜌𝑙)
,    𝛾1 =

3𝑉0𝜌𝑙
2

(1+𝑉0𝜌𝑙)2, 

 𝛾2 =
3𝜌𝑙

2(1+2𝑉0𝜌𝑙)

𝑅0
2(1+𝑉0𝜌𝑙)3 ,    𝑉0 =

4

3
𝜋𝑁𝑅0

3. 

 Substituting (10) and (15) into (9), (1) and (2) to obtain the following system of equations  

 −𝛾1
𝜕𝜑

𝜕𝑡
+ 2𝛾2𝜑

𝜕𝜑

𝜕𝑡
+ 𝜌0∇ • 𝐯 − 𝛾1𝜑∇ • 𝐯 − 𝛾1𝐯 • ∇𝜑 = 0, (16) 

 𝜌0 (
𝜕𝐯

𝜕𝑡
+ 𝐯 • ∇𝐯) − 𝛾1𝜑

𝜕𝐯

𝜕𝑡
+ ∇𝑝 = 0, (17) 

 𝑝(𝑥, 𝑦, 𝑡) −   𝑝0 +
2𝜎

𝑅0
+

𝜑𝑝

𝑅0
−

3𝐻𝑛𝜑𝜑𝑡𝑝

𝑅0
2 +

3𝑛𝐻𝑝𝜑𝑡

𝑅0
+ 𝐻𝑝𝑡 (18) 

 + (
6𝐻𝑛𝜎

𝑅0
2 −

2𝐻𝜎

𝑅0
2 +

4𝜇

𝑅0
) 𝜑𝑡 + (

4𝜆1

𝑅0
+

4𝐻𝜇

𝑅0
+ 𝜌𝑅0) 𝜑𝑡𝑡 

 −
3𝑝0𝜑2

𝑅0
2   +

2𝑝0𝜑

𝑅0
+ (

3𝜌

2
+

12𝑛𝜇

𝑅0
2 −

6𝜆1

𝑅0
2 −

8𝜆2

𝑅0
2 −

4𝐻𝜇

𝑅0
2 ) 𝜑𝑡

2 

 + (𝐻𝑅0𝜌 +
4𝐻𝜆1

𝑅0
) 𝜑𝑡𝑡𝑡 + (  2𝜌 −

4𝐻𝜇

𝑅0
2 ) 𝜑𝜑𝑡𝑡 

 + (𝐻4𝜌  +
12𝐻𝑛𝜆1

𝑅0
2 + 𝐻3𝜌𝑛 −

18𝐻𝜆1

𝑅0
2 −

18𝐻𝜆2

𝑅0
2 ) 𝜑𝑡𝜑𝑡𝑡 

 + (𝐻𝜌 −
4𝐻𝜆1

𝑅0
2 ) 𝜑𝜑𝑡𝑡𝑡 + (

4𝐻𝜎

𝑅0
3 −

12𝐻𝑛𝜎

𝑅0
3 ) 𝜑𝜑𝑡 = 0, 

 where  

 𝐻 =
2𝑅0

2𝑝0

3𝜛𝑔Nu(𝑛−1)𝑇0
.   (19) 

 

𝐻 describes the heat transfer phenomena of the second grade liquid. 

 

3. Linear case 

Linearising the system of equations (16) - (18), we have a linear wave equation  

 𝜑𝑡𝑡 − 𝑐0
2∇𝜑,    𝑐0

2 =
2𝑝0

𝛾1𝑅0
, (20) 

 where 𝑐0 is the speed of wave in the mixture. Introducing dimensionless variables  

 𝑥 = 𝜆𝑥∗,    𝑦 = 𝜆𝑦∗,    𝑡 = 𝜆/𝑐0𝑡∗,    𝐯 = 𝑐0𝐯∗, 
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     𝜌 = 𝜌0𝜌∗,    𝑝 = 𝑝0𝑝∗ + 𝑝0 −
2𝜎

𝑅0
,    𝜑 = 𝑅0𝜑∗, (21) 

 equation (16) in non-dimensional form is  

 𝜑𝑡 + 𝜑∇ • 𝐯 + 𝐯 • ∇𝜑 −
2𝛾2𝑅0

𝛾1
𝜑𝑡 −

𝜌0

𝛾1𝑅0
∇ • 𝐯 = 0, (22) 

 
𝜌0

𝛾1𝑅0
(𝐯𝑡 + 𝐯 • ∇𝐯) − 𝜑∇𝐯 +

𝑝0

𝛾1𝑐0
2𝑅0

∇𝑝 = 0, (23) 

 𝑝 + 𝛽𝑝𝑡 + 𝜑𝑝 + 𝛽0𝜑𝑡𝑝 − 𝛽0𝜑𝜑𝑡𝑝 + 𝛽1𝜑 + 𝛽2𝜑𝑡 + 𝛽3𝜑𝑡𝑡 

+𝛽4𝜑𝑡𝑡𝑡 + 𝛽5𝜑𝜑𝑡 − 3𝜑2   + 𝛽6𝜑𝑡
2 + 𝛽7𝜑𝜑𝑡𝑡 + 𝛽8𝜑𝑡𝜑𝑡𝑡 + 𝛽9𝜑𝜑𝑡𝑡𝑡 = 0, (24) 

 where  

 𝛽 =
𝐻𝑐0

𝜆
,    𝛽0 =

3𝑛𝐻𝑐0

𝜆
,    𝛽1 = (3 −

2𝜎

𝑝0𝑅0
), 

 𝛽2 = (
3𝑛𝐻𝑐0

𝜆
−

2𝐻𝜎𝑐0

𝑝0𝜆𝑅0
+

4𝜇𝑐0

𝑝0𝜆
) , 𝛽3 = (

4𝜆1𝑐0

𝑝0𝜆
+

4𝐻𝜇𝑐0

𝑝0𝜆
+

𝜌𝑅0
2𝑐0

𝑝0𝜆
),   

 𝛽4 = (
𝐻𝑅0𝜌𝑐0𝑅0

𝑝0𝜆
+

4𝐻𝜆1𝑐0

𝑝0𝜆
), 

 𝛽5 = (
4𝐻𝑐0𝜎

𝑝0𝜆𝑅0
−

12𝐻𝑐0𝑛𝜎

𝑝0𝜆𝑅0
− (1 −

2𝜎

𝑝0𝑅0
)

3𝐻𝑛𝑐0

𝜆
), 

 𝛽6 = (
3𝜌𝑐0

2𝑅0
2

2𝑝0𝜆2 +
12𝑐0

2𝜇𝑛

𝑝0𝜆2 −
6𝑐0

2𝜆1

𝑝0𝜆2 −
8𝑐0

2𝜆2

𝑝0𝜆2 −
4𝑐0

2𝐻𝜇

𝑝0𝜆2 ), 

 𝛽7 = (  
2𝜌𝑐0𝑅0

2

𝑝0𝜆
−

4𝐻𝜇𝑐0

𝑝0𝜆
), 

 𝛽8 = (
𝐻4𝜌𝑅0

2𝑐0
2

𝑝0𝜆2   +
12𝐻𝑛𝑐0

2𝜆1

𝑝0𝜆2 +
3𝐻𝑐0

2𝜌𝑛𝑅0
2

𝑝0𝜆2 −
18𝐻𝑐0

2𝜆1

𝑝0𝜆2 −
18𝑐0

2𝐻𝜆2

𝑝0𝜆2 ), 

 𝛽9 = (
𝐻𝜌𝑐0𝑅0

2

𝜆𝑝0
−

4𝐻𝑐0𝜆1

𝑝0𝜆
). 

  

4. Non-linear case 

Suppose the waves propagate along the 𝑥-axis and transverse in the 𝑦 direction. We shall 

use the perturbation method to obtain the non-linear evolution equation for the waves in 

the bubbly second grade liquid with heat transfer, We scale the independent variables as 

follows  

 𝜉 = 𝜀1/2(𝑥 − 𝑡),    𝜏 = 𝜀3/2𝑡,    𝛿 = 𝜀𝜅𝑦. (25) 

We consider perturbation of the wave propagating in the 𝑥 direction and the transverse 

variables 𝑦 are ‘slower’ than 𝑥. 

        Thus, the average inter-bubble distance is less than the characteristic wavelength and 

the radius of bubbles in the unperturbed state and 𝜀 = 𝑅0𝜆−1. The parameter 𝛿 indicates 

perturbation in 𝑦 direction. Substituting (25) into (22) - (24) and elimination 𝜀1/2 in (22) 

and (23), we get  

 𝛾1(𝜀𝜑𝜏 − 𝜑𝜉) + 𝛾1𝜑 (𝑣𝜉
(1)

+ 𝜀1/2𝜅𝑣𝛿
(2)

) + 𝛾1(𝑣(1)𝜑𝜉 + 𝜀1/2𝜅𝑣(2)𝜑𝛿) 

 −2𝛾2𝑅0𝜑(𝜀𝜑𝜏 − 𝜑𝜉) −
𝜌0

𝑅0
(𝑣𝜉

(1)
+ 𝜀1/2𝜅𝑣𝛿

(2)
) = 0, (26) 

  

 
𝜌0

𝛾1𝑅0
(𝜀𝑣𝜏

(1)
− 𝑣𝜉

(1)
+ 𝑣(1)𝑣𝜉

(1)
+ 𝜀1/2𝜅𝑣(2)𝑣𝛿

(1)
) 

 −𝜑 (𝜀𝑣𝜏
(1)

− 𝑣𝜉
(1)

) +
1

𝛽1
𝑝𝜉 = 0, (27) 

  

 
𝜌0

𝛾1𝑅0
(𝜀𝑣𝜏

(2)
− 𝑣𝜉

(2)
+ 𝑣(1)𝑣𝜉

(2)
+ 𝜀1/2𝜅𝑣(2)𝑣𝛿

(2)
) 
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 −𝜑 (𝜀𝑣𝜏
(2)

− 𝑣𝛿
(2)

) + 𝜀1/2 𝜅

𝛽1
𝑝𝛿 = 0, (28) 

  

 𝑝 + 𝛽 (𝜀
3

2𝑝𝜏 − 𝜀
1

2𝑝𝜉) + 𝜑𝑝 + 𝛽0 (𝜀
3

2𝜑𝜏 − 𝜀
1

2𝜑𝜉) 𝑝 

 −𝛽0𝜑 (𝜀
3

2𝜑𝜏 − 𝜀
1

2𝜑𝜉) 𝑝 + 𝛽1𝜑 + 𝛽2 (𝜀
3

2𝜑𝜏 − 𝜀
1

2𝜑𝜉) 

 +𝛽3(𝜀3𝜑𝜏𝜏 − 2𝜀2𝜑𝜏𝜉 + 𝜀𝜑𝜉𝜉) 

 +𝛽4 (𝜀
9

2𝜑𝜏𝜏𝜏   −   3𝜀
7

2𝜑𝜏𝜏𝜉 +   3𝜀
5

2𝜑𝜏𝜉𝜉 −   𝜀
3

2𝜑𝜉𝜉𝜉) 

 +𝛽5𝜑 (𝜀
3

2𝜑𝜏 − 𝜀
1

2𝜑𝜉) − 3𝜑2 

 +𝛽6 (𝜀
3

2𝜑𝜏 − 𝜀
1

2𝜑𝜉)
2

+ 𝛽7𝜑(𝜀3𝜑𝜏𝜏 − 2𝜀2𝜑𝜏𝜉 + 𝜀𝜑𝜉𝜉) 

 +𝛽8 (𝜀
3

2𝜑𝜏 − 𝜀
1

2𝜑𝜉) (𝜀3𝜑𝜏𝜏 − 2𝜀2𝜑𝜏𝜉 + 𝜀𝜑𝜉𝜉) 

 +𝛽9𝜑 (𝜀
9

2𝜑𝜏𝜏𝜏   −   3𝜀
7

2𝜑𝜏𝜏𝜉 +   3𝜀
5

2𝜑𝜏𝜉𝜉 −  𝜀
3

2𝜑𝜉𝜉𝜉) = 0. (29) 

 Let the solution of (26) - (29) be in the form 

 

 𝑝 = 𝜀𝑝1 + 𝜀2𝑝2 + ⋯ 

 𝜑 = 𝜀𝜑 + 𝜀2𝜑2 + ⋯ 

 𝑣(1) = 𝜀𝑣1
(1)

+ 𝜀2𝑣2
(1)

+ ⋯ (30) 

 𝑣(2) = 𝜀3/2𝑣1
(2)

+ 𝜀5/2𝑣2
(2)

+ ⋯ 

Substituting (30) into (26) - (29), we obtained for the first order of 𝑂(𝜀)  

 𝜑1𝜉 +
𝜌0

𝛾1𝑅0
𝑣𝜉

(1)
= 0,    −

𝜌0

𝛾1𝑅0
𝑣𝜉

(1)
+

1

𝛽1
𝑝1𝜉 = 0,    𝑝1 = −𝛽1𝜑1, (31) 

 which is integrated to give  

 𝜑1(𝜉, 𝛿, 𝜏) =
𝜌0

𝛾1𝑅0
𝑣(1) ,    −

𝜌0

𝛾1𝑅0
𝑣(1) +

1

𝛽1
𝑝1 = 0,    𝑝1 = −𝛽1𝜑1. (32) 

The integration constants are assumed to be zero. Substitute (30) into (26) - (29) and 

equating the expressions at 𝜀2 in (26), (27) and (29), and at 𝜀3/2 in (28), we obtain the 

following system of equations with 𝐻 = 𝛽2 = 𝑂(𝜀2)  

 𝛾1𝜑1𝜏 − 𝛾1𝜑2𝜉 + 𝛾1𝜑1𝑣𝜉
(1)

+ 𝛾1𝑣1
(1)

𝜑1𝜉 + 2𝛾2𝑅0𝑣𝜉
(1)

𝜑1𝜑1𝜉 

 −
𝜌0

𝑅0
𝑣2𝜉

(1)
−

𝜌0

𝑅0
𝜅𝑣1𝛿

(2)
= 0, (33) 

 
𝜌0

𝛾1𝑅0
(𝑣1𝜏

(1)
− 𝑣2𝜉

(1)
+ 𝑣1

(1)
𝑣1𝜉

(1)
) + 𝜑1𝑣1𝜉

(1)
+ +

1

𝛽1
𝑝2𝜉 = 0, 

 𝑝2 + 𝛽1𝐻𝜑1𝜉 − 𝛽1𝜑1  
2 + 𝛽1𝜑2 − 𝛽2𝜑1𝜉 + 𝛽3𝜑1𝜉𝜉 − 3𝜑1𝜉

2 = 0. 

Eliminating 𝑝2 and the velocities in (33), we have  

 𝜑1𝜏 + (
𝛾2

𝛾1
𝑅0 −

𝛾1𝑅0

𝜌0
− 1) 𝜑1𝜑1𝜉 − (

𝛽2

2𝛽1
−

𝐻

2
) 𝜑1𝜉𝜉 (34) 

 −
6

2𝛽1
𝜑1𝜉𝜑1𝜉𝜉 +

𝛽3

2𝛽1
𝜑1𝜉𝜉𝜉   −

𝜌0

2𝛾1𝑅0
𝜅 = 0, (35) 

 −
𝜌0

𝛾1𝑅0
𝑣1𝜉

(2)
− 𝜅𝜑1𝛿 = 0, (36) 

which can be written as  



Nonlinear Wave Propagation in Bubbly Viscoelastic Liquid with Heat Transfer 

119 

 

 

(𝜑1𝜏 + (
𝛾2

𝛾1
𝑅0 −

𝛾1𝑅0

𝜌0
− 1) 𝜑1𝜑1𝜉 − (

𝛽2

2𝛽1
−

𝐻

2
) 𝜑1𝜉𝜉

−
6

2𝛽1
𝜑1𝜉𝜑1𝜉𝜉 +

𝛽3

2𝛽1
𝜑1𝜉𝜉𝜉)

𝜉
+

𝜅2

2
𝜑1𝛿𝛿 = 0.

 (37) 

 

Equivalently, using (32), equation (37) can be written in terms of pressure as  

 (𝑝1𝜏 + 𝐴𝑝1𝑝1𝜉 − 𝐵𝑝1𝜉𝜉 + 𝐶𝑝1𝜉𝜉𝜉)
𝜉

+ 𝐷𝑝1𝛿𝛿 = 0 (38) 

 𝐴 =
1

𝛽1
(

𝛾1𝑅0

𝜌0
−

𝛾2𝑅0

𝛾1
) ,    𝐵 =

𝛽2

2𝛽1
,    𝐶 =

𝛽3

2𝛽1
,    𝐷 =

𝜅2

2
 (39) 

Equation (38) is a two-dimensional Korteweg–de-Vries Burgers for the description of non-

linear waves motion in a viscoelastic liquid with gas bubbles incorporating the effect of 

heat transfer. If 𝐵 = 0, we have Kadomtsev-Petviashvili equation(KP) which is two-

dimensional case of Korteweg–de-Vries equation  

 (𝑝1𝜏 + 𝐴𝑝1𝑝1𝜉 + 𝐶𝑝1𝜉𝜉𝜉)
𝜉

+ 𝐷𝑝1𝛿𝛿 = 0. (40) 

 

In the case of dissipation, the main influence of non-linear waves is governed by the 

perturbation of the Burgers equation, while the Korteweg–de Vries equation corresponds 

to the influence of dispersion of the waves. The dispersion and dissipation relation of the 

system shall be analysed. Equations (38) and (40) admit analytical solitary wave solutions. 

  

5. Result and discussion 

Solutions to (2+1)-KdVB equation (38) are derived in [28] using Adomian decomposition 

method [29]. The analysis on the nature of shock wave is done using the initial condition 

[30]  

 𝑝0(𝜉, 0, 𝜏) = 0.5 (1 − tanh
|𝜉|−25−𝜏

5
) (41) 

 

 
Figure 1: Two dimensional pressure wave propagation in second grade liquid with heat 

transfer at 𝜏 = 3 sec. 

 

The pressure wave profile of the shock wave propagation in a pseudo compressible second 

grade viscoelastic liquid with out bubble-bubble interaction will be discussed here using 
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equation (38). Fig 1 shows the two dimensional shock wave propagation of the bubbly-

liquid in 𝜉 and 𝛿 directions at 𝜏 = 3 sec. Fig 2 shows the two dimensional shock wave 

propagation in 𝜉 over the range of a specified 𝜏 which shows the behaviour of shock wave 

over time. The figure described wave propagation from 𝜏 = 0 ⋯ 40 sec, where the 

oscillation is fully developed. 

         The dynamics of shock waves propagation in mono-dispersed, pseudo compressible 

bubbly second grade liquid flow are investigated using the following parameters [25]: 𝑝0 =
10,287.12Pa, 𝜌𝑙 = 1000kg/m3, 𝜌𝑔 = 0.01kg/m3, 𝜆1 = 1.179MPa2, 𝜆2 = −6.55, 𝑅0 =

1mm, 𝜎 = 0.0535N/m, 𝜇 = 164mPa. s, 𝑐𝑙 = 1452.220795ms−1 and 𝑁 = 200, Nu=10, 

and 𝛾 = 1.4.  

 
Figure 2: Two dimensional pressure wave propagation in second grade liquid with heat 

transfer 

 
Figure 3: Effect of bubble radious variation on the pressure wave propagation with heat 

transfer at 𝜏 = 5 sec. 

 

Fig. 3 shows the influence of the bubble radius to pressure profile of shock wave 

propagation in bubbly compressible second grade liquid. The figure indicates that the size 

of the bubble has no influence on the amplitude of the shock wave as at 𝜏 = 5 and 𝜉 =
0. .15, then from 𝜉 = 15 to 𝜉 = 30, amplitude of the shock wave of bubbe with higher 
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radius is much more higher that the bubble with smaller radius.   

 

   
Figure 4: Temperature variation on the wave propagation in second grade liquid 𝜏 =

7 sec. 

   

 
Figure 5: Tolytropic index variation on the wave propagation in second grade liquid 𝜏 =

5 sec. 

 

Shock wave as at τ = 5 and ξ = 0..15, then from ξ = 15 to ξ = 30, amplitude of the shock 

wave of bubbe with higher radius is much higher that the bubble with smaller radius. Fig. 

4 and Fig. 5 analysis the effect of the mixture temperature and the polytropic index, which 

describes the thermal behavior of gas inside the bubbles. The effect of the thermal variation 

of the polytropic index has less influence on the wave propagation of the pressure profile, 

at the longer time the oscillation of the wave propagation increases due the increase in the 

mixture temperature and gas polytropic index, it is observed that the effect of viscosity to 

pressure profile of shock wave propagation dominate the effect of thermal conductivity. 

The more viscous is the liquid, the lower the amplitude wave. A highly viscous second 

grade liquid dissipate faster and vice versa.  
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Figure 6: Presure variation on shock wave propagation in second grade liquid 𝜏 = 5 sec. 

 

Fig 6 shows the effect of pressure variation to pressure profile of the shock wave 

propagation. It is observed that change in pressure has a significant effect on the shock 

wave amplitude. The effect is just the higher the pressure, the higher the shock wave 

amplitude, and the steeper the wave. These results are in agree with results and analysis in 

[17]. 

 

6. Conclusion 

In this paper, the nonlinear wave propagation in bubbly second-grade liquid, with modified 

Rayleigh-Plesset bubble equation are investigated. The mixture equations are combined 

with of state for gas equation to study the wave propagation in the bubbly liquid flow. 

Perturbation method is used in simplifying state variables. A (2+1) KdV-Burgers equation 

is obtained by considering the pressure wave profile. Adomian decomposition method of 

solution is adopted to graphically simulate the results. Analysing our simulation with the 

assumptions that the interaction between bubble-bubble, cluster radius, and number of 

bubble in a cluster have no effect on the nonlinear wave propagation in compressible 

second grade liquid flow. Taking into account the heat transfer between the bubble and the 

liquid, the pressure, initial bubble radius and thermal properties of the gas affect the shock 

wave propagation in bubble second-grade liquid flow.  
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