
Annals of Pure and Applied Mathematics 

Vol. 30, No. 1, 2024, 19-41 

ISSN: 2279-087X (P), 2279-0888(online) 

Published on 30 September 2024 

www.researchmathsci.org 

DOI: http://dx.doi.org/10.22457/apam.v30n1a03944 

  
 

19 

 

   Hamacher Operations on Pythagorean Fuzzy Matrices 

and Fermatean Fuzzy Matrices  

Debasish Mahata 

 Department of Applied Mathematics 

Vidyasagar University, Midnapore-721102, India. 

e-mail: idebasishmahata@gmail.com 

Received 16 August 2024; accepted 30 September 2024 

Abstract. This study aims to extend Pythagorean and Fermatean fuzzy matrices within the 

framework of Hamacher operations. This paper introduces the concepts of Pythagorean 

fuzzy matrices and Hamacher operations for Fermatean fuzzy matrices and discusses 

several desirable properties of these operations, including commutativity, idempotency, 

and monotonicity. Additionally, we prove De Morganâ€™s laws over complements for 

these operations. The study also explores scalar multiplication and exponentiation 

operations for Fermatean fuzzy matrices, examining their algebraic properties. Finally, 

some necessity properties and possibility operators for Fermatean fuzzy matrices are 

established. 
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1. Introduction 

In data analysis, fuzzy matrices play a crucial role in clustering, classification, and data 

mining. Fuzzy clustering algorithms, such as fuzzy c-means, use fuzzy matrices to allow 

data points to belong to multiple clusters with varying degrees of membership [1]. This 

approach is particularly useful in handling overlapping clusters and improving clustering 

quality. 

In classification, fuzzy matrices aid in developing fuzzy rule-based systems, which 

are more flexible and capable of handling uncertainties compared to classical methods. 

Fuzzy rule-based systems use fuzzy matrices to represent the rules and membership 

functions, allowing for more nuanced decision-making. For instance, in medical diagnosis, 

fuzzy rule-based systems can use fuzzy matrices to represent the relationships between 

symptoms and diseases, providing more accurate diagnoses even when the input data is 

imprecise or incomplete [11]. 

In data mining, fuzzy matrices are used to discover patterns and relationships in 

large datasets. For instance, fuzzy association rule mining, which uses fuzzy matrices to 

represent the relationships between items, can identify frequent patterns in transactional 

data. This approach is particularly useful in market basket analysis, where the goal is to 
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identify sets of items that are frequently purchased together [6]. 

Despite their numerous advantages, fuzzy matrices face several challenges. One of 

the main challenges is computational complexity. Operations on fuzzy matrices, such as 

multiplication and inversion, can be computationally intensive, especially for large 

matrices. Researchers are continually developing more efficient algorithms to address 

these challenges, but computational efficiency remains a significant concern. 

Another challenge is the interpretability of fuzzy matrices. While fuzzy matrices 

provide a powerful tool for modeling uncertainty and imprecision, the resulting models can 

be difficult to interpret. This is particularly problematic in applications such as decision-

making, where the interpretability of the model is crucial for gaining user trust and 

acceptance. Researchers are exploring various approaches to enhance the interpretability 

of fuzzy matrices, such as simplifying the structure of fuzzy matrices and developing 

visualization techniques [30]. 

Looking ahead, the future of fuzzy matrices looks promising, with several exciting 

research directions. One area of future research is the development of more efficient 

computational methods for fuzzy matrices. Advances in parallel computing, such as the 

use of graphics processing units (GPUs) and distributed computing frameworks, hold great 

potential for improving the computational efficiency of fuzzy matrix operations [11]. 

Researchers are also exploring the integration of fuzzy matrices with emerging 

technologies such as artificial intelligence, big data, and the Internet of Things (IoT) [29]. 

For instance, in the context of big data, fuzzy matrices can be used to handle the uncertainty 

and imprecision inherent in large, complex datasets. 

The notion of an intuitionistic fuzzy matrix (IFM) was first introduced 

independently by Khan et al.[19] and Im et al. as a generalization of Thomason’s fuzzy 

matrix. In an IFM, each element is represented by an ordered pair 〈𝑢𝑖𝑗, 𝑢′𝑖𝑗〉  where 

𝑢𝑖𝑗, 𝑢′𝑖𝑗 ∈ [0,1]  and 0 ≤ 𝑢𝑖𝑗 + 𝑢
′
𝑖𝑗 ≤ 1.  Khan and Pal established fundamental 

operations and relations for IFMs, such as maxmin, minmax, complement, algebraic sum, 

and algebraic product, demonstrating equality between IFMs. Mondal and Pal[7] explored 

similarity relations, invertibility conditions, and eigenvalues of IFMs. Zhang and Xu 

developed into intuitionistic fuzzy value and IFMs, introducing intuitionistic fuzzy 

similarity relations and applying them in clustering analysis. Emam and Fndh [5] 

introduced various types of IFMs and devised a method to derive an idempotent IFM from 

any given one through minmax composition. Muthuraji et al.[10] developed a 

decomposition technique for intuitionistic fuzzy matrices. 

Yager[28] introduced the concept of Pythagorean fuzzy sets (PFS) and formulated 

aggregation operations for them. Subsequently, Zhang and Xu [31] explored various binary 

operations on PFS and proposed a decision-making algorithm based on this concept. 

Utilizing the framework of PFS, Pythagorean fuzzy matrices (PFM) were introduced, and 

their algebraic operations were defined by Silambarasan and Sriram [25]. Demonstrating 

further advancements, it was shown that the set of all Pythagorean fuzzy matrices 

constitutes a commutative monoid concerning algebraic sum and algebraic product[25]. 

Additionally, the development of Hamacher operations on Pythagorean fuzzy 

matrices and an investigation into their algebraic properties were carried out [25]. In 2020, 

scalar multiplication and exponentiation operations for Pythagorean fuzzy matrices were 

established, accompanied by an exploration of their desirable properties. Senapati and 

Yager (2020) introduced Fermatean FS (FFS), emphasizing its ability to address greater 
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levels of uncertainty compared to IFS and PFS. This implies that IFS and PFS are specific 

cases of FFS, thus enabling FFSs to manage heightened uncertainty levels. Building on the 

theory of FFS, Fermatean fuzzy matrices were introduced, and their algebraic operations 

were defined by Silambarasan [26]. 

Further developments included the establishment of scalar multiplication and 

exponentiation operations for Fermatean fuzzy matrices, alongside an investigation into 

their algebraic properties. The paper also presents the development of Hamacher operations 

for Fermatean fuzzy matrices and the proof of their algebraic properties. 

The Pythagorean fuzzy matrix (PFM) has emerged as a valuable tool for 

representing uncertainty in multi-criteria decision-making problems. It incorporates both 

membership and non-membership degrees, ensuring that the sum of their squares remains 

equal to or less than 1. Compared to the Intuitionistic Fuzzy Matrix (IFM), the PFM offers 

greater versatility. There are instances where the PFM can resolve issues that the IFM 

cannot address. 

For example, if a decision maker provides membership and non-membership 

degrees of 0.7 and 0.6 respectively, it is only compatible with the PFM. Essentially, all 

intuitionistic fuzzy degrees fall within the spectrum of Pythagorean fuzzy degrees, 

underscoring the PFM’s superior capability in managing uncertain problems. 

Figure (0) illustrates the distinctions among IFM, PFM. Any Fuzzy Matrix (IFM) 

< 𝑢𝑖𝑗, 𝑢′𝑖𝑗 >, that is an Intuitionistic Fuzzy Matrix (IFM), is also a Pthyagorean Fuzzy 

Matrix (PFM) and Fermatean Fuzzy Matrix (FFM). 

For any two fuzzy matrices 𝑈 and 𝑉, with elements ranging between 0 and 1, the 

hierarchical relation holds: 𝑢𝑖𝑗
3 ≤ 𝑢𝑖𝑗

2 ≤ 𝑢𝑖𝑗 and 𝑢′𝑖𝑗
3 ≤ 𝑢′𝑖𝑗

2 ≤ 𝑢′𝑖𝑗. Consequently, 𝑢𝑖𝑗 +

𝑢′𝑖𝑗 ≤ 1 leads to 𝑢𝑖𝑗
2 + 𝑢′𝑖𝑗

2 ≤ 1, which further implies 𝑢𝑖𝑗
3 + 𝑢′𝑖𝑗

3 ≤ 1. 

 

 
Figure 1: Comparison of spaces of the PFMs and IFMs 

  

Consider the point (0.9,0.6). Observing that (0.9)3 + (0.6)3 ≤ 1 confirms its 

classification as an FFM. 
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Figure 2: Comparison of Spaces of the PFMs and IFMs and FFMs  

   

However, given that (0.9)2 + (0.6)2 = 0.81 + 0.36 = 1.17 ≥ 1  and 0.9 +
0.6 ≥ 1, it is evident that (0.9,0.6) neither qualifies as a PFM nor an IFM. 

The matrix 

𝑈 = [
(0.9,0.6) (0.2,0.4)
(0.3,0.4) (0.4,0.4)

] 

does not meet the criteria of being an IFM and a PFM, yet it satisfies the conditions to be 

considered as an FFM. 

 

2. Literature review 

In 1977, Thomason introduced fuzzy matrix (FM) [27]. After that many works have been 

published on FMs. Like fuzzy matrices, a lot of researchers worked on intuitionistic fuzzy 

matrices (IFMs) and published many papers. In 2001, Pal [12] introduced intuitionistic 

fuzzy determinant (IFD). Motivated by the concept of IFSs and IFD, Pal et al. [13] defined 

IFM and presented many properties. 

Several works on fuzzy and related matrices have been done by many researchers. 

Two new operators are defined on fuzzy matrices and presented several results [22], 

similarity relations, invertibility and eigenvalues are investigated for IFM [7] and for 

bipolar fuzzy matrix [8], inverse of IFMs is studied in [20, 21], triangular fuzzy matrices 

discussed in [23], circulant triangular fuzzy number matrices are presented in [2], complex 

nilpotent matrices defined in [3], norm [16], interval-valued fuzzy matrices studied in [24], 

rank of interval-valued fuzzy matrices is discussed in [9], picture fuzzy matrix is defined 

in [4], bipolar fuzzy matrices investigated in [17]. New type of fuzzy matrices are 

introduced whose rows and columns are uncertain, see for the fuzzy matrices [15], for 

intuitionistic fuzzy matrices [18], for interval-valued fuzzy matrices [14]. 

To the best of our knowledge, no work have been done on Fermatean fuzzy 

matrices. 

 

3. Preliminaries 

An intuitionistic fuzzy matrix (IFM)is a matrix of pairs 𝑈 = (< 𝑢𝑖𝑗, 𝑢′𝑖𝑗 >) of a non-

negative real numbers 𝑢𝑖𝑗, 𝑢′𝑖𝑗 ∈ [0,1] satisfying  

 0 ≤ (𝑢𝑖𝑗 + 𝑢′𝑖𝑗) ≤ 1,   𝑓𝑜𝑟  𝑎𝑙𝑙   𝑖, 𝑗, (1) 
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where 𝑢𝑖𝑗 and 𝑢′𝑖𝑗 are the membership and non-membership value of the 𝑖𝑗th element. 

By changing the restriction of Eqn. (1), different type of FMs can be defined. The 

general form of the condition (1) is defined below. 

 

 0 ≤ (𝑢𝑖𝑗
𝑝
+ 𝑢′𝑖𝑗)

𝑝 ≤ 1,   𝑓𝑜𝑟  𝑎𝑙𝑙   𝑖, 𝑗, (2) 

 where 𝑝 is an integer. 

If we consider 𝑝 = 2 , a new type of fuzzy matrix is generated, known as a 

Pythagorean fuzzy matrix (PFM), which is defined independently below. 

A PFM is a pairs 𝑈 = (< 𝑢𝑖𝑗, 𝑢′𝑖𝑗 >) of a non-negative real numbers 𝑢𝑖𝑗, 𝑢′𝑖𝑗 ∈

[0,1] satisfying condition 0 ≤ (𝑢𝑖𝑗)
2 + (𝑢′𝑖𝑗)

2 ≤ 1    ∀𝑖, 𝑗 , where 𝑢𝑖𝑗  and 𝑢′𝑖𝑗  are the 

membership and non-membership value of the 𝑖𝑗th element. 

Similarly, if we considered 𝑝 = 3, we obtained another FM known as Fermatean 

fuzzy matrix (FFM), defined below. 

A FFM)is a pairs 𝑈 = (< 𝑢𝑖𝑗 , 𝑢′𝑖𝑗 >) of a non-negative real numbers 𝑢𝑖𝑗, 𝑢′𝑖𝑗 ∈

[0,1] satisfying condition 0 ≤ (𝑢𝑖𝑗)
3 + (𝑢′𝑖𝑗)

3 ≤ 1    ∀𝑖, 𝑗 , where 𝑢𝑖𝑗  and 𝑢′𝑖𝑗  are the 

membership and non-membership value of the 𝑖𝑗th element. 

For other values of 𝑝, different types of fuzzy matrices can be defined. However, 

to the best of my knowledge, no such fuzzy matrices have been defined for higher values 

of 𝑝. 

During last few decades, some operators based on 𝑡-norms and 𝑡-conorms have 

been defined. Among them, Hamacher operator is one of the well studied operator. 

 

3.1. Hamacher Operations 

Hamacher operations includes the Hamacher sum and product, which are examples of 𝑡-
norms and 𝑡-conorms respectively.They are defined as follows:- 

 𝑇(𝑢, 𝑣) = 𝑢 ⊙ 𝑣 =
(𝑢𝑣)

(𝛾+(1−𝛾)(𝑢+𝑣−𝑢𝑣))
 

and 

 𝑇∗(𝑢, 𝑣) = 𝑢 ⊕ 𝑣 =
(𝑢+𝑣−𝑢𝑣)−(1−𝛾)𝑢𝑣

1−(1−𝛾)𝑢𝑣
 

Especially,when 𝛾 = 1, then Hamacher t-norm and t-conorm reduces to  

 𝑇(𝑢, 𝑣) = 𝑢 ⊙ 𝑣 = 𝑢𝑣 
and  

 𝑇∗(𝑢, 𝑣) = 𝑢 ⊕ 𝑣 = 𝑢 + 𝑣 − 𝑢𝑣 
 

They are the algebric t-norm and t-conorm respectively.When 𝛾 = 2 Hamacher t-

norm and t-conorm reduces to  

 

 𝑇(𝑢, 𝑣) = 𝑢 ⊙ 𝑣 =
𝑢𝑣

2+(1−2)(𝑢+𝑣−𝑢𝑣)
=

𝑢𝑣

1+(1−𝑢)(1−𝑏)
 

 and 

 𝑇∗(𝑢, 𝑣) = 𝑢 ⊕ 𝑣 =
𝑢+𝑣

1+𝑢𝑣
. 

𝑇(𝑢, 𝑣) and 𝑇∗(𝑢, 𝑣) are called Einstein 𝑡-norm and 𝑡-conorm respectively. 

The combination of the Hamacher operator with PFMs and FFMs yields many 

interesting results. Some of them are presented in this paper. 
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4. Hamacher operations on Pythagorean fuzzy matrices 

The basic operation on any type of FMs are sum and product. These two operations are 

defined below. 

 

Definition 1. Let 𝑈 = (< 𝑢𝑖𝑗 , 𝑢′𝑖𝑗 >) and 𝑉 = (< 𝑣𝑖𝑗, 𝑣′𝑖𝑗 >) be any two PFMs of 

same size, then 

  (i) The Hamacher sum between 𝑈 and 𝑉 is defined as, 

𝑈⊕𝐻 𝑉 = (𝑤𝑖𝑗); ∀𝑖, 𝑗 

 

where, 𝑤𝑖𝑗 =

{
 

 
< 1,0 >, if < uij, u′ij >=< 1,0 > and < vij, v′ij >=< 1,0 >

〈√
𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−2𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

1−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 , √
𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 〉, Otherwise
 (3) 

 

(ii) The Hamacher product between 𝑈 and 𝑉 is defined as, 

𝑈⊙𝐻 𝑉 = (𝑑𝑖𝑗); ∀𝑖, 𝑗 

 

where, 𝑑𝑖𝑗 =

{
 

 
< 0,1 >, if < uij, u′ij >=< 0,1 > and < vij, v′ij >=< 0,1 >

〈√
𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 , √
𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −2𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

1−𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 〉, Otherwise
 (4) 

  

 

The relations between Hamacher sum and Hamacher product is established in the 

following theorem. 

 

Theorem 1. Let 𝑈, 𝑉 be any two PFMs of the same size, then 𝑈⊙𝐻 𝑉 ≤ 𝑈⊕𝐻 𝑉.  

Proof: we know that for any real numbers 𝑢, 𝑣 ∈ [0,1], the following inequality holds: 

 

 √
𝑢2𝑣2

𝑢2+𝑣2−𝑢2𝑣2
≤ √

𝑢2+𝑣2−2𝑢2𝑣2

1−𝑢2𝑣2
 (5) 

 

Using the above inequality (5), we have  

 √
𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 ≤ √
𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−2𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

1−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2  

 

and 

 √
𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 ≤ √
𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −2𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

1−𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 . 

Now, by definition of Hamacher sum and product, we get 𝑈⊙𝐻 𝑉 ≤ 𝑈⊕𝐻 𝑉. 

 

Theorem 2. For any PFM 𝑈, (i) 𝑈⊕𝐻 𝑈 ≥ 𝑈, (ii)𝑈⊙𝐻 𝑈 ≤ 𝑈.  

Proof : 
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(i) 

 𝑈⊕𝐻 𝑈 = 〈√
2𝑢𝑖𝑗

2 −2𝑢𝑖𝑗
4

1−𝑢𝑖𝑗
4 , √

𝑢′𝑖𝑗
4

2𝑢′𝑖𝑗
2 −𝑢′𝑖𝑗

4 〉 

 = 〈√
2𝑢𝑖𝑗

2

1+𝑢𝑖𝑗
2 , √

𝑢′𝑖𝑗
2

2−𝑢′𝑖𝑗
2 〉 

 ≥< 𝑢𝑖𝑗, 𝑢′𝑖𝑗 >≥ 𝑈 

 

(ii) Similarly, 𝑈⊙𝐻 𝑈 ≤ 𝑈 can be proved. 

 

Theorem 3. If 𝑈, 𝑉 are any two PFMs of same size and 𝑈 ≤ 𝑉, then 𝑈⊙𝐻𝑊 ≤
𝑉⊙𝐻𝑊.  

Proof: We know that for any three real numbers 𝑢, 𝑣, 𝑤 ∈ [0,1] and if 𝑢 ≤ 𝑣 then  

 √
𝑢2𝑤2

𝑢2+𝑤2−𝑢2𝑤2
≤ √

𝑣2𝑤2

𝑣2+𝑤2−𝑣2𝑤2
 (6) 

 and  

 √
𝑢2+𝑤2−2𝑢2𝑤2

1−𝑢2𝑤2 ≤ √
𝑣2+𝑤2−2𝑣2𝑤2

1−𝑣2𝑤2  (7) 

 

Using inequality (6), we have 

√
𝑢𝑖𝑗
2𝑤2𝑖𝑗

𝑢𝑖𝑗
2 +𝑤𝑖𝑗

2 − 𝑢𝑖𝑗
2𝑤𝑖𝑗

2 ≤ √
𝑣𝑖𝑗
2𝑤𝑖𝑗

2

𝑣𝑖𝑗
2 +𝑤𝑖𝑗

2 − 𝑣𝑖𝑗
2𝑤𝑖𝑗

2  

This implies, √
𝑣′𝑖𝑗
2 𝑤′𝑖𝑗

2

𝑣′𝑖𝑗
2 +𝑤′𝑖𝑗

2 −𝑣′𝑖𝑗
2 𝑤′𝑖𝑗

2 ≥ √
𝑢′𝑖𝑗
2 𝑤′𝑖𝑗

2

𝑢′𝑖𝑗
2 +𝑤′𝑖𝑗

2 −𝑢′𝑖𝑗
2 𝑤′𝑖𝑗

2  

Hence, we get 𝑈⊙𝐻𝑊 ≤ 𝑉⊙𝐻𝑊. 

 

Theorem 4. If 𝑈, 𝑉 be any two PFMs of the same size and 𝑈 ≤ 𝑉, 𝑈⊕𝐻𝑊 ≤
𝑉⊕𝐻𝑊.  

Proof : Using inequality (7) from Theorem (3), we have  

 √
𝑢𝑖𝑗
2 +𝑤𝑖𝑗

2−2𝑢𝑖𝑗
2𝑤2𝑖𝑗

1−𝑢𝑖𝑗
2𝑤𝑖𝑗

2 ≤ √
𝑣𝑖𝑗
2+𝑤𝑖𝑗

2−2𝑣𝑖𝑗
2𝑤𝑖𝑗

2

1−𝑣𝑖𝑗
2𝑤𝑖𝑗

2  

This implies  

 √
𝑣′𝑖𝑗
2 +𝑤′𝑖𝑗

2 −2𝑣′𝑖𝑗
2 𝑤′𝑖𝑗

2

1−𝑣′𝑖𝑗
2 𝑤′𝑖𝑗

2 ≥ √
𝑢′𝑖𝑗
2 +𝑤′𝑖𝑗

2 −2𝑢′𝑖𝑗
2 𝑤′𝑖𝑗

2

1−𝑢′𝑖𝑗
2 𝑤′𝑖𝑗

2  

Finally, we get 𝑈⊕𝐻𝑊 ≤ 𝑉⊕𝐻𝑊. 

 

Theorem 5.  If 𝑈, 𝑉 be any two PFMs of the same size, then 

(i) (𝑈 ∩ 𝑉)⊕𝐻 (𝑈 ∪ 𝑉) = 𝑈⊕𝐻 𝑉, 

(ii) (𝑈 ∩ 𝑉)⊙𝐻 (𝑈 ∪ 𝑉) = 𝑈⊙𝐻 𝑉.  

Proof: (i) 
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(𝑈 ∩ 𝑉)⊕𝐻 (𝑈 ∪ 𝑉) = (< 𝑚𝑖𝑛(𝑢𝑖𝑗 , 𝑣𝑖𝑗),𝑚𝑎𝑥(𝑢′𝑖𝑗, 𝑣′𝑖𝑗) >⊕𝐻

< 𝑚𝑎𝑥(𝑢𝑖𝑗, 𝑣𝑖𝑗),𝑚𝑖𝑛(𝑢′𝑖𝑗, 𝑣′𝑖𝑗) >) 

= 
 

〈√
𝑚𝑖𝑛(𝑢𝑖𝑗

2 ,𝑣𝑖𝑗
2 )+𝑚𝑎𝑥(𝑢𝑖𝑗

2 ,𝑣𝑖𝑗
2 )−2𝑚𝑖𝑛(𝑢𝑖𝑗

2 ,𝑣𝑖𝑗
2 )𝑚𝑎𝑥(𝑢𝑖𝑗

2 ,𝑣𝑖𝑗
2 )

1−𝑚𝑖𝑛(𝑢𝑖𝑗
2 ,𝑣𝑖𝑗

2 )𝑚𝑎𝑥(𝑢𝑖𝑗
2 ,𝑣𝑖𝑗

2 )
, √

𝑚𝑎𝑥(𝑢′𝑖𝑗
2 ,𝑣′𝑖𝑗

2 )𝑚𝑖𝑛(𝑢′𝑖𝑗
2 ,𝑣′𝑖𝑗

2 )

𝑚𝑎𝑥(𝑢′𝑖𝑗
2 ,𝑣′𝑖𝑗

2 )+𝑚𝑖𝑛(𝑢′𝑖𝑗
2 ,𝑣′𝑖𝑗

2 )−𝑚𝑎𝑥(𝑢′𝑖𝑗
2 ,𝑣′𝑖𝑗

2 )𝑚𝑖𝑛(𝑢′𝑖𝑗
2 ,𝑣′𝑖𝑗

2 )
〉 

 = 〈√
𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−2𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

1−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 , √
𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 〉 

= 𝑈⊕𝐻 𝑉. 

  (ii) (𝑈 ∩ 𝑉)⊙𝐻 (𝑈 ∪ 𝑉) 
= (< 𝑚𝑖𝑛(𝑢𝑖𝑗 , 𝑣𝑖𝑗),𝑚𝑎𝑥(𝑢′𝑖𝑗, 𝑣′𝑖𝑗) >⊙𝐻< 𝑚𝑎𝑥(𝑢𝑖𝑗, 𝑣𝑖𝑗),𝑚𝑖𝑛(𝑢′𝑖𝑗, 𝑣′𝑖𝑗) >) 

= 〈√
min(𝑢𝑖𝑗

2 , 𝑣𝑖𝑗
2 )max(𝑢𝑖𝑗

2 , 𝑣𝑖𝑗
2 )

min(𝑢𝑖𝑗
2 , 𝑣𝑖𝑗

2 ) + max(𝑢𝑖𝑗
2 , 𝑣𝑖𝑗

2 ) − min(𝑢𝑖𝑗
2 , 𝑣𝑖𝑗

2 )max(𝑢𝑖𝑗
2 , 𝑣𝑖𝑗

2 )
, 

 

√
𝑚𝑎𝑥(𝑢′𝑖𝑗

2 , 𝑣′𝑖𝑗
2 ) + 𝑚𝑖𝑛(𝑢′𝑖𝑗

2 , 𝑣′𝑖𝑗
2 ) − 2𝑚𝑎𝑥(𝑢′𝑖𝑗

2 , 𝑣′𝑖𝑗
2 )𝑚𝑖𝑛(𝑢′𝑖𝑗

2 , 𝑣′𝑖𝑗
2 )

1 − 𝑚𝑎𝑥(𝑢′𝑖𝑗
2 , 𝑣′𝑖𝑗

2 )𝑚𝑖𝑛(𝑢′𝑖𝑗
2 , 𝑣′𝑖𝑗

2 )
〉 

= 〈√
𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

𝑢𝑖𝑗
2 + 𝑣𝑖𝑗

2 − 𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 , √
𝑢′𝑖𝑗
2 + 𝑣′𝑖𝑗

2 − 2𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

1 − 𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 〉 

= 𝑈⊙𝐻 𝑉. 

 

Theorem 6. If 𝑈, 𝑉 be any two PFMs of the same size then 

(i) (𝑈 ⊕𝐻 𝑉)
𝑐 = (𝑈)𝑐⊙𝐻 (𝑉)

𝑐, 

(ii) (𝑈 ⊙𝐻 𝑉)
𝑐 = (𝑈)𝑐⊕𝐻 (𝑉)

𝑐, 

(iii) (𝑈 ⊕𝐻 𝑉)
𝑐 ≤ (𝑈)𝑐⊙𝐻 (𝑉)

𝑐, 

(iv) (𝑈 ⊙𝐻 𝑉)
𝑐 ≥ (𝑈)𝑐⊙𝐻 (𝑉)

𝑐, where c denotes the complement.  

Proof: 
(i) 

 (𝑈)𝑐⊙𝐻 (𝑉)
𝑐 = 〈√

𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 , √
𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−2𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

1−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 〉 = (𝑈⊕𝐻 𝑉)
𝑐 

(ii)  

 (𝑈)𝑐⊕𝐻 (𝑉)
𝑐 = 〈√

𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −2𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

1−𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 , √
𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 〉 = (𝑈⊙𝐻 𝑉)
𝑐 . 

(iii) We know that, 

 (𝑈 ⊕𝐻 𝑉)
𝑐 = 〈√

𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 , √
𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−2𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

1−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 〉 

and  
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 (𝑈)𝑐⊕𝐻 (𝑉)
𝑐 = 〈√

𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −2𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

1−𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 , √
𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 〉 

Now using inequality (5), we get  

 √
𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2 ≤ √
𝑢′𝑖𝑗
2 +𝑣′𝑖𝑗

2 −2𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2

1−𝑢′𝑖𝑗
2 𝑣′𝑖𝑗

2  

and  

 √
𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−2𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

1−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2 ≥ √
𝑢𝑖𝑗
2 𝑣𝑖𝑗

2

𝑢𝑖𝑗
2 +𝑣𝑖𝑗

2−𝑢𝑖𝑗
2 𝑣𝑖𝑗

2  

Hence, (𝑈 ⊕𝐻 𝑉)
𝑐 ≤ (𝑈)𝑐⊙𝐻 (𝑉)

𝑐. 

  (iv) Similarly, we can prove (𝑈 ⊙𝐻 𝑉)
𝑐 ≥ (𝑈)𝑐⊙𝐻 (𝑉)

𝑐. 

 

5. Hamacher operations on Fermatean fuzzy matrices 

In this section, the Hamachar operator is defined and investigated for FFMs. 

 

Definition 2. Let 𝑈 = (< 𝑢𝑖𝑗 , 𝑢′𝑖𝑗 >) and 𝑉 = (< 𝑣𝑖𝑗, 𝑣′𝑖𝑗 >) be any two FFMs of 

same size, then 

(i) The Hamacher sum 𝑈 and 𝑉 is defined as, 

𝑈⊕𝐻 𝑉 = (𝛼𝑖𝑗); for all 𝑖, 𝑗.  

 𝑤ℎ𝑒𝑟𝑒, 𝛼𝑖𝑗 =

{
 

 
< 1,0 >, if < uij, u′ij >=< 1,0 > and < vij, v′ij >=< 1,0 >

〈√
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉, otherwise
 

 

(ii) The Hamacher product 𝑈 and 𝑉 is defined as, 

𝑈⊙𝐻 𝑉 = (𝛽𝑖𝑗); ∀𝑖, 𝑗 

 

 where, 𝛽𝑖𝑗 =

{
 

 
< 0,1 >, if < uij, u′ij >=< 0,1 > and < vij, v′ij >=< 0,1 >

〈√
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉, otherwise
 

  

 

 

Lemma 1. For any real numbers 𝑢, 𝑣 ∈ [0,1], the following inequality holds  

 √
𝑢3𝑣3

𝑢3+𝑣3−𝑢3𝑣3

3
≤ √

𝑢3+𝑣3−2𝑢3𝑣3

1−𝑢3𝑣3

3
. 

 

Proof: Let 
𝑢𝑣

𝑢+𝑣−𝑢𝑣
≤

𝑢+𝑣−2𝑢𝑣

1−𝑢𝑣
. 

We know that 

 

 (𝑢 + 𝑣)2 ≥ 4𝑢𝑣 (8) 
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 so, 𝑢 + 𝑣 − 𝑢𝑣 ≤ 1 − (1 − 𝑢) ≤ 1 

 or,    1 + 3(𝑢 + 𝑣 − 𝑢𝑣) ≤ 4 

 or,    (1 + 3(𝑢 + 𝑣 − 𝑢𝑣))𝑢𝑣 ≤ 4𝑢𝑣 (9) 

 

From the equations (8) and (9), we get  

 (1 + 3(𝑢 + 𝑣 − 𝑢𝑣))𝑢𝑣 ≤ 4𝑢𝑣 ≤ (𝑢 + 𝑣)2 

 or,    ≤ (𝑢 + 𝑣)2 − (1 + 3(𝑢 + 𝑣 − 𝑢𝑣))𝑢𝑣 

 or,    0 ≤ (𝑢 + 𝑣)2 + 3(𝑢 + 𝑣 − 𝑢𝑣) − 𝑢𝑣 

 or,    𝑢𝑣 ≤ (𝑢 + 𝑣)2 + 3𝑢2𝑣2 − 3𝑢𝑣(𝑢 + 𝑣) 
 or,    𝑢𝑣 − 𝑢2𝑣2 ≤ (𝑢 + 𝑣 − 2𝑢𝑣)(𝑢 + 𝑣 − 𝑢𝑣) 

 or,    
𝑢𝑣

𝑢+𝑣−𝑢𝑣
≤

𝑢+𝑣−2𝑢𝑣

1−𝑢𝑣
 

 or,    √
𝑢3𝑣3

𝑢3+𝑣3−𝑢3𝑣3

3
≤ √

𝑢3+𝑣3−2𝑢3𝑣3

1−𝑢3𝑣3

3
 

 

Now, a relation between Hamacher sum and Hamacher product on FFMs is 

established below. 

 

Theorem 7. If 𝑈, 𝑉 be any two FFMs of the same size, then 𝑈⊙𝐻 𝑉 ≤ 𝑈⊕𝐻 𝑉.  

Proof: Using the previous lemmas (1), (2) 

√
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 + 𝑣𝑖𝑗

3 − 𝑢𝑖𝑗
3 𝑣𝑖𝑗

2

3

≤ √
𝑢𝑖𝑗
3 + 𝑣𝑖𝑗

3 − 2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1 − 𝑢𝑖𝑗
3 𝑣𝑖𝑗

2

3

 

and√
𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

≤ √
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

. 

Now, by definition of Hamacher sum and product on FFMs, 𝑈⊙𝐻 𝑉 ≤ 𝑈⊕𝐻 𝑉. 

 

Theorem 8. For any FFMs 𝑈; 

(i) 𝑈⊕𝐻 𝑈 ≥ 𝑈, 

(ii) 𝑈⊙𝐻 𝑈 ≤ 𝑈.  

Proof: 
(i)  

 𝑈⊕𝐻 𝑈 = 〈√
𝑢𝑖𝑗
3 +𝑢𝑖𝑗

3 −2𝑢𝑖𝑗
3 𝑢𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑢𝑖𝑗

2

3

, √
𝑢′𝑖𝑗
3 𝑢′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑢′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑢′𝑖𝑗

3

3

〉 

 = 〈√
2𝑢𝑖𝑗

3 −2𝑢𝑖𝑗
6

1−𝑢𝑖𝑗
6

3

, √
𝑢′𝑖𝑗
6

2𝑢′𝑖𝑗
3 −𝑢′𝑖𝑗

6

3

〉 

 = 〈√
2𝑢𝑖𝑗

3

1+𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

2−𝑢′𝑖𝑗
3

3

〉 

 ≥ 〈𝑢𝑖𝑗
3 , 𝑢′𝑖𝑗

3 〉 

 ≥ 〈𝑢𝑖𝑗, 𝑢′𝑖𝑗〉 ≥ 𝑈. 

 

(ii) Similarly, 𝑈⊙𝐻 𝑈 ≤ 𝑈 can be proved. 
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Lemma 2. For any three real numbers 𝑢, 𝑣, 𝑤 ∈ [0,1], if 𝑢 ≤ 𝑣 then  

(i) √
𝑢3𝑤3

𝑢3+𝑤3−𝑢3𝑤3

3
≤ √

𝑣3𝑤3

𝑣3+𝑤3−𝑣3𝑤3

3
, 

(ii) √
𝑢3+𝑤3−2𝑢3𝑤3

1−𝑢3𝑤3

3
≤ √

𝑣3+𝑤3−2𝑣3𝑤3

1−𝑣3𝑤3

3
.  

Proof: Let 
𝑢𝑤

𝑢+𝑤−𝑢𝑤
≤

𝑣𝑤

𝑣+𝑤−𝑣𝑤
. 

We know that  

 𝑢 ≤ 𝑣   𝑖𝑚𝑝𝑙𝑖𝑒𝑠   𝑢𝑤2 ≤ 𝑣𝑤2 

 or,    𝑢𝑤2 + 𝑢𝑣𝑤(1 − 𝑤) ≤ 𝑣𝑤2 + 𝑢𝑣𝑤(1 − 𝑤) 
 or,    𝑢𝑤2 + 𝑢𝑣𝑤 − 𝑢𝑣𝑤2 ≤ 𝑣𝑤2 + 𝑢𝑣𝑤 − 𝑢𝑣𝑤2 

 or,    𝑢𝑤(𝑤 + 𝑣 − 𝑣𝑤) ≤ 𝑣𝑤(𝑤 + 𝑢 − 𝑢𝑤) 

 or,    
𝑢𝑤

𝑢+𝑤−𝑢𝑤
≤

𝑣𝑤

𝑣+𝑤−𝑣𝑤
 

 or,    √
𝑢3𝑤3

𝑢3+𝑤3−𝑢3𝑤3

3
≤ √

𝑣3𝑤3

𝑣3+𝑤3−𝑣3𝑤3

3
 

 

(ii) Let 
𝑢+𝑤−2𝑢𝑤

1−𝑢𝑤
≤

𝑣+𝑤−2𝑣𝑤

1−𝑣𝑤
. 

Since, we know that  

 𝑢 ≤ 𝑣 ⟹ 𝑢(1 − 𝑤)2 ≤ 𝑣(1 − 𝑤)2 

 or,    𝑢(1 − 2𝑤 +𝑤2) ≤ 𝑣(1 − 2𝑤 + 𝑤2) 
 or,    𝑢(1 − 2𝑤 +𝑤2) ≤ 𝑣(1 − 2𝑤 + 𝑤2) 
 or,    𝑢 − 2𝑢𝑤 + 𝑢𝑤2 ≤ 𝑣 − 2𝑣𝑤 + 𝑣𝑤2 

 or,    𝑢 − 2𝑢𝑤 + 𝑢𝑤2 + (𝑤 − 𝑢𝑣𝑤 + 2𝑢𝑣𝑤2) ≤ 𝑣 − 2𝑣𝑤 + 𝑣𝑤2 +
(𝑤 − 𝑢𝑣𝑤 + 2𝑢𝑣𝑤2) 

 or,    𝑢 + 𝑤 − 2𝑢𝑤 − 𝑣𝑤(𝑢 + 𝑤 − 2𝑢𝑤) ≤ 𝑣 + 𝑤 − 2𝑣𝑤 − 𝑢𝑤(𝑣 +
𝑤 − 2𝑣𝑤) 

 or,    (𝑢 + 𝑤 − 2𝑢𝑤)(1 − 𝑣𝑤) ≤ (𝑣 + 𝑤 − 2𝑣𝑤)(1 − 𝑢𝑤) 

 or,    
𝑢+𝑤−2𝑢𝑤

1−𝑢𝑤
≤

𝑣+𝑤−2𝑣𝑤

1−𝑣𝑤
 

 or,    √
𝑢3+𝑤3−2𝑢3𝑤3

1−𝑢3𝑤3

3
≤ √

𝑣3+𝑤3−2𝑣3𝑤3

1−𝑣3𝑤3

3
 

 

 

Theorem 9. If 𝑈, 𝑉,𝑊 be any three FFMs of the same size and 𝑈 ≤ 𝑉, 𝑈⊙𝐻𝑊 ≤
𝑉⊙𝐻𝑊.  

Proof: Using Lemma (2)(i),  

 √
𝑢𝑖𝑗
3𝑤3𝑖𝑗

𝑢𝑖𝑗
3 +𝑤𝑖𝑗

3−𝑢𝑖𝑗
3𝑤𝑖𝑗

3

3

≤ √
𝑣𝑖𝑗
3𝑤𝑖𝑗

3

𝑣𝑖𝑗
3+𝑤𝑖𝑗

3−𝑣𝑖𝑗
3𝑤𝑖𝑗

3

3

 

 

 ⟹ √
𝑣′𝑖𝑗
3 𝑤′𝑖𝑗

3

𝑣′𝑖𝑗
3 +𝑤′𝑖𝑗

3 −𝑣′𝑖𝑗
3 𝑤′𝑖𝑗

3

3

≥ √
𝑢′𝑖𝑗
3 𝑤′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑤′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑤′𝑖𝑗

3

3

. 

Thus, 𝑈⊙𝐻𝑊 ≤ 𝑉⊙𝐻𝑊. 



   Debasish Mahata  

30 

 

 

Theorem 10. If 𝑈, 𝑉,𝑊 be any three FFMs of the same size and 𝑈 ≤ 𝑉, 𝑈⊕𝐻𝑊 ≤
𝑉⊕𝐻𝑊.  

Proof: Let 𝑢𝑖𝑗 ≤ 𝑣𝑖𝑗 and 𝑢′𝑖𝑗 ≤ 𝑣′𝑖𝑗, for all 𝑖, 𝑗. 

Using Lemma (2)(ii) 

√
𝑢𝑖𝑗
3 +𝑤𝑖𝑗

3 − 2𝑢𝑖𝑗
3𝑤3𝑖𝑗

1 − 𝑢𝑖𝑗
3𝑤𝑖𝑗

3

3

≤ √
𝑣𝑖𝑗
3 +𝑤𝑖𝑗

3 − 2𝑣𝑖𝑗
3𝑤𝑖𝑗

3

1 − 𝑣𝑖𝑗
3𝑤𝑖𝑗

3

3

 

and √
𝑣′𝑖𝑗
3 +𝑤′𝑖𝑗

3 −2𝑣′𝑖𝑗
3 𝑤′𝑖𝑗

3

1−𝑣′𝑖𝑗
3 𝑤′𝑖𝑗

3

3

≥ √
𝑢′𝑖𝑗
3 +𝑤′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑤′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑤′𝑖𝑗

3

3

. 

Hence, we get 𝑈⊕𝐻𝑊 ≤ 𝑉⊕𝐻𝑊. 

 

Theorem 11. If 𝑈, 𝑉 be any two FFMs of the same size, then 

(i) (𝑈 ∩ 𝑉)⊕𝐻 (𝑈 ∪ 𝑉) = 𝑈⊕𝐻 𝑉, 

(ii) (𝑈 ∩ 𝑉)⊙𝐻 (𝑈 ∪ 𝑉) = 𝑈⊙𝐻 𝑉.  

Proof: (i) (𝑈 ∩ 𝑉)⊕𝐻 (𝑈 ∪ 𝑉) 
= (< 𝑚𝑖𝑛(𝑢𝑖𝑗 , 𝑣𝑖𝑗),𝑚𝑎𝑥(𝑢′𝑖𝑗, 𝑣′𝑖𝑗) >⊕𝐻< 𝑚𝑎𝑥(𝑢𝑖𝑗, 𝑣𝑖𝑗),𝑚𝑖𝑛(𝑢′𝑖𝑗, 𝑣′𝑖𝑗) >)  

 = 〈√
𝑚𝑖𝑛(𝑢𝑖𝑗

3 ,𝑣𝑖𝑗
3 )+𝑚𝑎𝑥(𝑢𝑖𝑗

3 ,𝑣𝑖𝑗
3 )−2𝑚𝑖𝑛(𝑢𝑖𝑗

3 ,𝑣𝑖𝑗
3 )𝑚𝑎𝑥(𝑢𝑖𝑗

3 ,𝑣𝑖𝑗
3 )

1−𝑚𝑖𝑛(𝑢𝑖𝑗
3 ,𝑣𝑖𝑗

3 )𝑚𝑎𝑥(𝑢𝑖𝑗
3 ,𝑣𝑖𝑗

3 )

3

, 

 √
𝑚𝑎𝑥(𝑢′𝑖𝑗

3 ,𝑣′𝑖𝑗
3 )𝑚𝑖𝑛(𝑢′𝑖𝑗

3 ,𝑣′𝑖𝑗
3 )

𝑚𝑎𝑥(𝑢′𝑖𝑗
3 ,𝑣′𝑖𝑗

3 )+𝑚𝑖𝑛(𝑢′𝑖𝑗
2 ,𝑣′𝑖𝑗

3 )−𝑚𝑎𝑥(𝑢′𝑖𝑗
3 ,𝑣′𝑖𝑗

3 )𝑚𝑖𝑛(𝑢′𝑖𝑗
3 ,𝑣′𝑖𝑗

3 )

3

〉 

 = 〈√
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 

 = 𝑈⊕𝐻 𝑉. 
 

(ii) (𝑈 ∩ 𝑉)⊙𝐻 (𝑈 ∪ 𝑉) 
= (< 𝑚𝑖𝑛(𝑢𝑖𝑗 , 𝑣𝑖𝑗),𝑚𝑎𝑥(𝑢′𝑖𝑗, 𝑣′𝑖𝑗) >⊙𝐻< 𝑚𝑎𝑥(𝑢𝑖𝑗, 𝑣𝑖𝑗),𝑚𝑖𝑛(𝑢′𝑖𝑗, 𝑣′𝑖𝑗) >) 

= 〈√
𝑚𝑖𝑛(𝑢𝑖𝑗

3 ,𝑣𝑖𝑗
3 )𝑚𝑎𝑥(𝑢𝑖𝑗

2 ,𝑣𝑖𝑗
3 )

𝑚𝑖𝑛(𝑢𝑖𝑗
3 ,𝑣𝑖𝑗

3 )+𝑚𝑎𝑥(𝑢𝑖𝑗
3 ,𝑣𝑖𝑗

3 )−𝑚𝑖𝑛(𝑢𝑖𝑗
3 ,𝑣𝑖𝑗

3 )𝑚𝑎𝑥(𝑢𝑖𝑗
3 ,𝑣𝑖𝑗

3 )

3

,         

√
𝑚𝑎𝑥(𝑢′𝑖𝑗

3 ,𝑣′𝑖𝑗
3 )+𝑚𝑖𝑛(𝑢′𝑖𝑗

3 ,𝑣′𝑖𝑗
3 )−2𝑚𝑎𝑥(𝑢′𝑖𝑗

3 ,𝑣′𝑖𝑗
2 )𝑚𝑖𝑛(𝑢′𝑖𝑗

3 ,𝑣′𝑖𝑗
3 )

1−𝑚𝑎𝑥(𝑢′𝑖𝑗
3 ,𝑣′𝑖𝑗

3 )𝑚𝑖𝑛(𝑢′𝑖𝑗
3 ,𝑣′𝑖𝑗

3 )

3

〉  

= 〈√
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 + 𝑣𝑖𝑗

3 − 𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 + 𝑣′𝑖𝑗

3 − 2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1 − 𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 

= 𝑈⊙𝐻 𝑉. 

 

Theorem 12. If 𝑈, 𝑉 be any two FFMs of the same size then 

(i) (𝑈 ⊕𝐻 𝑉)
𝑐 = (𝑈)𝑐⊙𝐻 (𝑉)

𝑐, 

(ii) (𝑈 ⊙𝐻 𝑉)
𝑐 = (𝑈)𝑐⊕𝐻 (𝑉)

𝑐, 
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(iii) (𝑈 ⊕𝐻 𝑉)
𝑐 ≤ (𝑈)𝑐⊙𝐻 (𝑉)

𝑐, 

(iv) (𝑈 ⊙𝐻 𝑉)
𝑐 ≥ (𝑈)𝑐⊙𝐻 (𝑉)

𝑐, where c denotes complement.  

Proof: (i)  

 (𝑈)𝑐⊙𝐻 (𝑉)
𝑐 = 〈  √

𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 = (𝑈⊕𝐻 𝑉)
𝑐 . 

(ii) 

 (𝑈)𝑐⊕𝐻 (𝑉)
𝑐 = 〈√

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

 

 = (𝑈⊙𝐻 𝑉)
𝑐 

(iii) We know that,  

 (𝐴⊕𝐻 𝑉)
𝑐 = 〈√

𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

and  

 (𝑈)𝑐⊕𝐻 (𝑉)
𝑐 = 〈√

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3 , √
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉. 

Using Lemma 2(i) and 2(ii),we get  

 √
𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

≤ √
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

 

and  

 √
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

≥ √
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

. 

Hence, (𝑈 ⊕𝐻 𝑉)
𝑐 ≤ (𝑈)𝑐⊙𝐻 (𝑉)

𝑐 . 
(iv) Similarly, we can prove (𝑈 ⊙𝐻 𝑉)

𝑐 ≥ (𝑈)𝑐⊙𝐻 (𝑉)
𝑐 . 

 

6. Hamacher scalar multiplication and exponential operations on Fermatean fuzzy 

matrices 

We defined the following operations over Hamacher operations on FFMs. In this section, 

we form Hamacher scalar multiplication and Hamacher exponentiation operations on FFM 

𝑈 and investigate their algebraic properties. 

 

Theorem 13. If 𝑛 is any positive integer and 𝑈 is FFM, then the Hamacher scalar 

multiplication operation (⋅𝐻) is  

 𝑛 ⋅𝐻 𝑈 = (𝑈⊕𝐻 . . . .⊕𝐻 𝑈) = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

𝑛−(𝑛−1)𝑢′𝑖𝑗
3

3

〉 (10) 

 where (𝑈 ⊕𝐻 . . . .⊕𝐻 𝑈) represents the 𝑛 times Hamacher scalar multiplication of 𝑈.  

Proof: The expression of Eq. (10) is denoted by 𝑃(𝑛). 
Using mathematical induction, we prove Eq. (10), which holds for any positive integer 𝑛. 
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 𝑈 ⋅𝐻 𝑈 = 〈√
𝑢𝑖𝑗
3 +𝑢𝑖𝑗

3 −2𝑢𝑖𝑗
3 𝑢𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑢𝑖𝑗

2

3

, √
𝑢′𝑖𝑗
3 𝑢′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑢′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑢′𝑖𝑗

3

3

〉 

 = 〈√
2𝑢𝑖𝑗

3 −2𝑢𝑖𝑗
6

1−𝑢𝑖𝑗
6

3

, √
𝑢′𝑖𝑗
6

2𝑢′𝑖𝑗
3 −𝑢′𝑖𝑗

6

3

〉 

 = 〈√
2𝑢𝑖𝑗

3

1+𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

2−𝑢′𝑖𝑗
3

3

〉 

 2 ⋅𝐻 𝑈 = 〈√
2𝑢𝑖𝑗

3

1+(2−1)𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

2−(2−1)𝑢′𝑖𝑗
3

3

〉 

 𝑛 ⋅𝐻 𝑈 = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

𝑛−(𝑛−1)𝑢′𝑖𝑗
3

3

〉. 

 𝑃(𝑛) holds. 

Suppose that Eq. (10) holds for 𝑛 = 𝑚, then  

 𝑚 ⋅𝐻 𝑈 = 〈√
𝑚𝑢𝑖𝑗

3

1+(𝑚−1)𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

𝑚−(𝑚−1)𝑢′𝑖𝑗
3

3

〉. 

So, 

(𝑚 + 1) ⋅𝐻 𝑈 = ((𝑚 ⋅𝐻 𝑈) ⋅𝐻 𝑈)  

 = 〈√
𝑢𝑖𝑗
3 (𝑚+1)(1−𝑢𝑖𝑗

3 )

(1+𝑚𝑢𝑖𝑗
3 )(1−𝑢𝑖𝑗

3 )

3

, √
(𝑢′𝑖𝑗

3 )2

(𝑚+1−𝑚𝑢′𝑖𝑗
3 )𝑢′𝑖𝑗

3

3

〉 

 = 〈√
𝑢𝑖𝑗
3 (𝑚+1)

(1+𝑚𝑢𝑖𝑗
3 )

3

, √
𝑢′𝑖𝑗
3

(𝑚+1−𝑚𝑢′𝑖𝑗
3 )

3

〉 

 = 〈√
(𝑚+1)𝑢𝑖𝑗

3

1+((𝑚+1)−1)𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

(𝑚+1)−((𝑚+1)−1)𝑢′𝑖𝑗
3

3

〉. 

 

When 𝑛 = 𝑚 + 1 

𝑛 ⋅𝐻 𝑈 = (𝑈⊕𝐻 . . . .⊕𝐻 𝑈) = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

𝑛−(𝑛−1)𝑢′𝑖𝑗
3

3

〉 also holds. 

Thus by induction hypothesis, 𝑃(𝑛) holds for any positive integer 𝑛. 

 

Theorem 14. If n is any positive integer and 𝑈 is FFM, then the Hamacher 

exponentiation opertion (∧𝐻) is 

 𝑈∧𝐻
𝑛
= (𝑈 ⊙𝐻. . . .⊙𝐻 𝑈) = 〈√

𝑢𝑖𝑗
3

𝑛−(𝑛−1)𝑢𝑖𝑗
3

3

, √
𝑛𝑢′𝑖𝑗

3

1+(𝑛−1)𝑢′𝑖𝑗
3

3

〉 (11) 

where (𝑈 ⊙𝐻 . . . .⊙𝐻 𝑈)  represents the 𝑛  times Hamacher exponentiation of 𝑈 . The 

expression of Eq. (11) is denoted by 𝑃′(𝑛).  
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Proof: Using mathematical induction, we can prove the equation (11), which holds for any 

positive integer 𝑛. 

 𝑈∧𝐻
1
= 〈√

𝑢𝑖𝑗
3 𝑢𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑢𝑖𝑗

3 −𝑢𝑖𝑗
3 𝑢𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 +𝑢′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑢′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑢′𝑖𝑗

2

3

〉 

   = 〈√
𝑢𝑖𝑗
6

2𝑢𝑖𝑗
3 −𝑢𝑖𝑗

6

3

, √
2𝑢′𝑖𝑗

3 −2𝑢′𝑖𝑗
6

1−𝑢′𝑖𝑗
6

3

〉 

 = 〈√
𝑢𝑖𝑗
3

2−𝑢𝑖𝑗
3

3

, √
2𝑢′𝑖𝑗

3

1+𝑢′𝑖𝑗
3

3

〉 

 𝑈∧𝐻
2
= 〈√

𝑢𝑖𝑗
3

2−(2−1)𝑢𝑖𝑗
3

3

, √
2𝑢′𝑖𝑗

3

1+(2−1)𝑢′𝑖𝑗
3

3

〉 

 𝑈∧𝐻
𝑛
= 〈√

𝑢𝑖𝑗
3

𝑛−(𝑛−1)𝑢𝑖𝑗
3

3

, √
𝑛𝑢′𝑖𝑗

3

1+(𝑛−1)𝑢′𝑖𝑗
3

3

. 〉 

 

Thus, 𝑃′(𝑛) holds. 

Suppose that Eq. (11) holds for 𝑛 = 𝑚, then  

 𝑈∧𝐻
𝑚
= (𝑈 ⊙𝐻 . . . .⊙𝐻 𝑈) = 〈√

𝑢𝑖𝑗
3

𝑚−(𝑚−1)𝑢𝑖𝑗
3

3

, √
𝑚𝑢′𝑖𝑗

3

1+(𝑚−1)𝑢′𝑖𝑗
3

3

〉 (12) 

When 𝑛 = 𝑚 + 1,  

 𝑈∧𝐻
(𝑚+1)

= 〈√
𝑢𝑖𝑗
3

(𝑚+1)−((𝑚+1)−1)𝑢𝑖𝑗
3

3

, √
(𝑚+1)𝑢′𝑖𝑗

3

1+((𝑚+1)−1)𝑢′𝑖𝑗
3

3

〉 

  

 𝑈∧𝐻
𝑛
= (𝑈 ⊙𝐻. . . .⊙𝐻 𝑈) = 〈√

𝑢𝑖𝑗
3

𝑛−(𝑛−1)𝑢𝑖𝑗
3

3

, √
𝑛𝑢′𝑖𝑗

3

1+(𝑛−1)𝑢′𝑖𝑗
3

3

〉 

 also holds. 

Use the induction hypothesis, 𝑃′(𝑛) holds for any positive integer 𝑛. 

Note that 𝑛 ⋅𝐻 𝑈 and 𝑈∧𝐻
𝑛

 are also FFMs. 

 

Theorem 15. For any FFM 𝑈, and any positive integer 𝑛, 𝑛 ⋅𝐻 𝑈 and 𝑈∧𝐻
𝑛

 are also 

FFMs.  

Proof:  0 ≤ 𝑢𝑖𝑗
3 ≤ 1; 0 ≤ 𝑢′𝑖𝑗

3 ≤ 1;  0 ≤ 𝑢𝑖𝑗
3 + 𝑢′𝑖𝑗

3 ≤ 1 ≤ 2;  

𝑛 > 1, (𝑛 − 1)𝑢𝑖𝑗
3 > −1, i. e. 1 + (𝑛 − 1)𝑢𝑖𝑗

3 > 0; 𝑛 − (𝑛 − 1)𝑢′𝑖𝑗
3 = 𝑢′𝑖𝑗

3 + 𝑛(1 − 𝑢′𝑖𝑗
3 )

≥ 𝑢′𝑖𝑗
3 . 

Then we have, √
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

≥ 0  √
𝑢′𝑖𝑗
3

𝑛−(𝑛−1)𝑢′𝑖𝑗
3

3

≥ 0. 

We consider that  



   Debasish Mahata  

34 

 

 1 + (𝑛 − 1)𝑢𝑖𝑗
3 = 𝑛𝑢𝑖𝑗

3 + 1 − 𝑢𝑖𝑗
3 ≥ 𝑛𝑢𝑖𝑗

3  

and  

 𝑛 − (𝑛 − 1)𝑢′𝑖𝑗
3 = 𝑢′𝑖𝑗

3 + 𝑛(1 − 𝑢′𝑖𝑗
3 ) ≥ 𝑢′𝑖𝑗

3  

Thus,  

 √
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

≤ 1, √
𝑢′𝑖𝑗
3

𝑛−(𝑛−1)𝑢′𝑖𝑗
3

3

≤ 1. 

 

 𝑢𝑖𝑗
3 + 𝑢′𝑖𝑗

3 ≤ 1⟹ 0 ≤ 𝑢′𝑖𝑗
3 ≤ 1 − 𝑢𝑖𝑗

3  

 

 ⟹ √
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

+ √
𝑢′𝑖𝑗
3

𝑛−(𝑛−1)𝑢′𝑖𝑗
3

3

 

 

 = √
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

+ √
1

𝑛

𝑢′𝑖𝑗
3 −(𝑛−1)

3  

 

 ≤ √
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

+ √
1

𝑛

1−𝑢𝑖𝑗
3 −(𝑛−1)

3 ; ∵ 0 ≤ 𝑢′𝑖𝑗
3 ≤ 1 − 𝑢𝑖𝑗

3  

Therefore,  

 0 ≤ √
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

≤ 1,0 ≤ √
𝑢′𝑖𝑗
3

𝑛−(𝑛−1)𝑢′𝑖𝑗
3

3

≤ 1 

 

 ⟹ √
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

+ √
𝑢′𝑖𝑗
3

𝑛−(𝑛−1)𝑢′𝑖𝑗
3

3

≤ 1 

In the same way, we get  

 0 ≤ √
𝑢𝑖𝑗
3

𝑛−(𝑛−1)𝑢𝑖𝑗
3

3

≤ 1,0 ≤ √
𝑛𝑢′𝑖𝑗

3

1+(𝑛−1)𝑢′𝑖𝑗
3

3

≤ 1 

 

 ⟹ √
𝑢𝑖𝑗
3

𝑛−(𝑛−1)𝑢𝑖𝑗
3

3

+ √
𝑛𝑢′𝑖𝑗

3

1+(𝑛−1)𝑢′𝑖𝑗
3

3

≤ 1. 

Hence, 𝑛 ⋅𝐻 𝑈 and 𝑈∧𝐻
𝑛

 are also FFMs. 

 

Theorem 16. Let 𝑈, 𝑉 any two FFMs of the same size and for any integer 𝑛. 

(i) 𝑛 ⋅𝐻 (𝑈 ∩ 𝑉) = (𝑛 ⋅𝐻 𝑈) ∩ (𝑛 ⋅𝐻 𝑉),  

(ii) 𝑛 ⋅𝐻 (𝑈 ∪ 𝑉) = (𝑛 ⋅𝐻 𝑈) ∪ (𝑛 ⋅𝐻 𝑉), 

(iii) (𝑈 ∩ 𝑉)∧𝐻
𝑛

=(𝑈)∧𝐻
𝑛
∩ (𝑉)∧𝐻

𝑛
, 

(iv) (𝑈 ∪ 𝑉)∧𝐻
𝑛

=(𝑈)∧𝐻
𝑛
∪ (𝑉)∧𝐻

𝑛
.  
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Proof: (i) We know that 

 

 (𝑈 ∩ 𝑉) = 〈𝑚𝑖𝑛(𝑢𝑖𝑗, 𝑣𝑖𝑗),𝑚𝑎𝑥(𝑢′𝑖𝑗, 𝑣′𝑖𝑗)〉. 

Then 

𝑛 ⋅𝐻 (𝑈 ∩ 𝑉) = 〈𝑤𝑖𝑗 , 𝑤′𝑖𝑗〉, 𝑛 ⋅𝐻 𝑈 = 〈𝑑𝑖𝑗 , 𝑑′𝑖𝑗〉, 𝑛 ⋅𝐻 𝑉 = 〈𝑒𝑖𝑗, 𝑒′𝑖𝑗〉 

where, 

 𝑤𝑖𝑗 = √
𝑛(𝑚𝑖𝑛(𝑢𝑖𝑗

3 ,𝑣𝑖𝑗
3 ))

1+(𝑛−1)(𝑚𝑖𝑛(𝑢𝑖𝑗
3 ,𝑣𝑖𝑗

3 ))

3

 

 𝑤𝑖𝑗 = 𝑚𝑖𝑛〈√
𝑛(𝑢𝑖𝑗

3 )

1+(𝑛−1)(𝑢𝑖𝑗
3 )

3

, √
𝑛(𝑣𝑖𝑗

3 )

1+(𝑛−1)𝑣𝑖𝑗
3

3

〉 

 𝑤𝑖𝑗 = 𝑚𝑖𝑛〈𝑑𝑖𝑗 , 𝑒𝑖𝑗〉 (13) 

 and  

 𝑤′𝑖𝑗 = √
𝑚𝑎𝑥(𝑢′𝑖𝑗

3 ,𝑣′𝑖𝑗
3 ))

𝑛−(𝑛−1)(𝑚𝑖𝑛(𝑢′𝑖𝑗
3 ,𝑣′𝑖𝑗

3 ))

3

 

 𝑤′𝑖𝑗 = 𝑚𝑎𝑥〈√
(𝑢′𝑖𝑗

3 )

𝑛−(𝑛−1)(𝑢′𝑖𝑗
3 )

3

, √
(𝑣′𝑖𝑗

3 )

𝑛−(𝑛−1)𝑣′𝑖𝑗
3

3

〉 

 𝑤′𝑖𝑗 = 𝑚𝑎𝑥〈𝑑′𝑖𝑗 , 𝑒′𝑖𝑗〉 (14) 

 

Comparing Eqs. (13) and (14), we have  

 (𝑛 ⋅𝐻 𝑈) ∩ (𝑛 ⋅𝐻 𝑉) = 〈𝑚𝑖𝑛(𝑑𝑖𝑗 , 𝑑′𝑖𝑗), 𝑚𝑎𝑥(𝑒𝑖𝑗 , 𝑒′𝑖𝑗)〉 

 

(𝑛 ⋅𝐻 𝑈) ∩ (𝑛 ⋅𝐻 𝑉)

= 𝑚𝑖𝑛〈√
𝑛𝑢𝑖𝑗

3

1 + (𝑛 − 1)𝑢𝑖𝑗
3

3

, √
𝑢′𝑖𝑗
3

𝑛 − (𝑛 − 1)𝑢′𝑖𝑗
3

3

〉,𝑚𝑎𝑥〈√
𝑛𝑣𝑖𝑗

3

1 + (𝑛 − 1)𝑣𝑖𝑗
3

3

, √
𝑣′𝑖𝑗
3

𝑛 − (𝑛 − 1)𝑣′𝑖𝑗
3

3

〉. 

Thus, we get 𝑛 ⋅𝐻 (𝑈 ∩ 𝑉) = (𝑛 ⋅𝐻 𝑈) ∩ (𝑛 ⋅𝐻 𝑉). 
(ii) Prof is similar to above. 

(iii) We know that  

 (𝑈 ∩ 𝑉) = 〈𝑚𝑖𝑛(𝑢𝑖𝑗, 𝑣𝑖𝑗),𝑚𝑎𝑥(𝑢′𝑖𝑗, 𝑣′𝑖𝑗)〉 

 

then (𝑈 ∩ 𝑉)∧𝐻
𝑛
= 〈𝑤𝑖𝑗, 𝑤′𝑖𝑗〉, (𝑈)

∧𝐻𝑛 = 〈𝑑𝑖𝑗 , 𝑑′𝑖𝑗〉, (𝑉)
∧𝐻𝑛 = 〈𝑒𝑖𝑗, 𝑒′𝑖𝑗〉 

where,  

 𝑤𝑖𝑗 = √
(𝑚𝑖𝑛(𝑢𝑖𝑗

3 ,𝑣𝑖𝑗
3 ))

𝑛−(𝑛−1)(𝑚𝑖𝑛(𝑢𝑖𝑗
3 ,𝑣𝑖𝑗

3 ))

3

 

 𝑤𝑖𝑗 = 𝑚𝑖𝑛〈√
(𝑢𝑖𝑗
3 )

𝑛−(𝑛−1)(𝑢𝑖𝑗
3 )

3

, √
𝑛(𝑣𝑖𝑗

3 )

𝑛−(𝑛−1)𝑣𝑖𝑗
3

3

〉 

 𝑤𝑖𝑗 = 𝑚𝑖𝑛〈𝑑𝑖𝑗 , 𝑒𝑖𝑗〉. (15) 

 and  
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 𝑤′𝑖𝑗 = √
𝑛(𝑚𝑎𝑥(𝑢′𝑖𝑗

3 ,𝑣′𝑖𝑗
3 )

1+(𝑛−1)(𝑚𝑎𝑥(𝑢′𝑖𝑗
3 ,𝑣′𝑖𝑗

3 ))

3

 

 𝑤′𝑖𝑗 = 𝑚𝑎𝑥〈√
𝑛(𝑢′𝑖𝑗

3 )

1+(𝑛−1)(𝑢′𝑖𝑗
3 )

3

, √
𝑛(𝑣′𝑖𝑗

3 )

1+(𝑛−1)𝑣′𝑖𝑗
3

3

〉 

 𝑤′𝑖𝑗 = 𝑚𝑎𝑥〈𝑑′𝑖𝑗 , 𝑒′𝑖𝑗〉 (16) 

 

Comparing Eqs. (15) and (16), we have  

 (𝑛 ⋅𝐻 𝑈) ∩ (𝑈)
∧𝐻𝑛 ∩ (𝑉)∧𝐻

𝑛
= 〈𝑚𝑖𝑛(𝑑𝑖𝑗 , 𝑑′𝑖𝑗),𝑚𝑎𝑥(𝑒𝑖𝑗 , 𝑒′𝑖𝑗)〉 

 

So, (𝑛 ⋅𝐻 𝑈) ∩ (𝑈)
∧𝐻𝑛 ∩ (𝑉)∧𝐻

𝑛
 

= 𝑚𝑖𝑛〈√
𝑢𝑖𝑗
3

𝑛 − (𝑛 − 1)𝑢𝑖𝑗
3

3

, √
𝑛𝑢′𝑖𝑗

3

1 + (𝑛 − 1)𝑢′𝑖𝑗
3

3

〉,max〈√
𝑣𝑖𝑗
3

𝑛 − (𝑛 − 1)𝑣𝑖𝑗
3

3

, √
𝑛𝑣′𝑖𝑗

3

1 + (𝑛 − 1)𝑣′𝑖𝑗
3

3

〉 

  (iv) Similarly, we can prove (𝑈 ∪ 𝑉)∧𝐻
𝑛

=(𝑈)∧𝐻
𝑛
∪ (𝑉)∧𝐻

𝑛
. 

 

7. Necessity and possibility operators on FFSs 

Definition 3. For any FFM 𝑈, the necessity (◻) and the possibility (⋄) operators are 

defined as follows:  

 ◻𝑈 = 〈𝑢𝑖𝑗 , √1 − 𝑢𝑖𝑗
33
〉 

and  

 ⋄ 𝑈 = 〈√1 − 𝑢′𝑖𝑗
33
, 𝑢′𝑖𝑗〉 

 

Theorem 17. For 𝑈, 𝑉 be any two FFMs of the same size, then 

(i) ◻ (𝑈⊕𝐻 𝑉) =◻𝑈⊕𝐻◻𝑉, 

(ii) ⋄ (𝑈 ⊕𝐻 𝑉) =⋄ 𝑈⊕𝐻⋄ 𝑉.  

Proof: (i)  

 ◻ (𝑈⊕𝐻 𝑉) = 〈√
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √1 −
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

 = 〈√
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
1−𝑢𝑖𝑗

3 𝑣𝑖𝑗
3−𝑢𝑖𝑗

3 −𝑣𝑖𝑗
3+2𝑢𝑖𝑗

3 𝑣𝑖𝑗
3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

 = 〈√
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
(1−𝑢𝑖𝑗

3 )(1−𝑣𝑖𝑗
3 )

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 (17) 

Now,  

 ◻𝑈⊕𝐻◻𝑉 = 〈𝑢𝑖𝑗, √1 − 𝑢𝑖𝑗
33
〉 ⊕𝐻 〈𝑣𝑖𝑗 , √1 − 𝑣𝑖𝑗

33
〉 

 = 〈√
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
(1−𝑢𝑖𝑗

3 )(1−𝑣𝑖𝑗
3 )

1−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 (18) 
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From Eqs. (17) and (18), we have ◻ (𝑈⊕𝐻 𝑉) =◻ 𝑈⊕𝐻◻𝑉. 
(ii)  

 ⋄ (𝑈 ⊕𝐻 𝑉) = 〈√1 −
𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 

 = 〈√
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 

 =⋄ 𝑈⊕𝐻⋄ 𝑉. 
 

Theorem 18. For  U , V be any two FFMs of the same size, then 

(i) ◻ (𝑈⊙𝐻 𝑉) =◻𝑈⊙𝐻◻𝑉, 

(ii) ⋄ (𝑈 ⊙𝐻 𝑉) =⋄ 𝑈⊙𝐻⋄ 𝑉.  

Proof: (i)  

 ◻ (𝑈⊙𝐻 𝑉) = 〈√
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

 √1 −
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

 = 〈√
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

 =◻𝑈⊙𝐻◻𝑉. 
 

(ii)  

 ⋄ (𝑈 ⊙𝐻 𝑉) = 〈√1 −
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 

 = 〈√
(1−𝑢′𝑖𝑗

3 )(1−𝑣′𝑖𝑗
3 )

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 

 =⋄ 𝑈⊙𝐻⋄ 𝑉. 
 

Theorem 19. For  U , V be any two FFMs of the same size, then 

(i) (◻ (𝑈𝑐⊕𝐻 𝑉
𝑐))𝑐 =⋄ 𝑈⊙𝐻⋄ 𝑉, 

(ii) (◻ (𝑈𝑐⊙𝐻 𝑉
𝑐))𝑐 =⋄ 𝑈⊕𝐻⋄ 𝑉.  

Proof: (i)  

 ◻ (𝑈𝑐⊕𝐻 𝑉
𝑐) = 〈√

𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √1 −
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 

 = 〈√
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
(1−𝑢′𝑖𝑗

3 )(1−𝑣′𝑖𝑗
3 )

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉. 

Now,  

 (◻ (𝑈𝑐⊕𝐻 𝑉
𝑐))𝑐 = 〈√

(1−𝑢′𝑖𝑗
3 )(1−𝑣′𝑖𝑗

3 )

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 
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Again,  

 ⋄ 𝑈 ⊙𝐻⋄ 𝑉 = 〈√
(1−𝑢′𝑖𝑗

3 )(1−𝑣′𝑖𝑗
3 )

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

, √
𝑢′𝑖𝑗
3 +𝑣′𝑖𝑗

3 −2𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

1−𝑢′𝑖𝑗
3 𝑣′𝑖𝑗

3

3

〉 

 

Therefore, we get (◻ (𝑈𝑐⊕𝐻 𝑉
𝑐))𝑐 =⋄ 𝑈⊙𝐻⋄ 𝑉. 

 

Theorem 20. For 𝑈, 𝑉 be any two FFMs of the same size, then 

(i) (⋄ (𝑈𝑐⊕𝐻 𝑉
𝑐))𝑐 =◻𝑈⊙𝐻◻𝑉, 

(ii) (⋄ (𝑈𝑐⊙𝐻 𝑉
𝑐))𝑐 =◻𝑈⊕𝐻◻𝑉.  

Proof: (i)  

 (𝑈𝑐⊙𝐻 𝑉
𝑐) = 〈√1 −

𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

 = 〈√
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉. 

Now,  

 (⋄ (𝑈𝑐⊕𝐻 𝑉
𝑐))𝑐 = 〈√

𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

Again,  

 ◻𝑈⊙𝐻◻𝑉 = 〈√
𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

, √
𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−2𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

𝑢𝑖𝑗
3 +𝑣𝑖𝑗

3−𝑢𝑖𝑗
3 𝑣𝑖𝑗

3

3

〉 

Therefore, (⋄ (𝑈𝑐⊕𝐻 𝑉
𝑐))𝑐 =◻𝑈⊙𝐻◻𝑉. 

(ii) Prof is similar. 

 

Theorem 21. For any FFM and for any positive integer 𝑛,  

(i) ◻ (𝑛 ⋅𝐻 𝑈) = 𝑛 ⋅𝐻 (◻ 𝑈), 
(ii) ⋄ (𝑛 ⋅𝐻 𝑈) = 𝑛 ⋅𝐻 (⋄ 𝑈), 

(iii) ◻𝑈∧𝐻
𝑛
= (◻ 𝑈)∧𝐻

𝑛
, 

(iv) ⋄ 𝑈∧𝐻
𝑛
= (⋄ 𝑈)∧𝐻

𝑛
.  

Proof: (i)  

 ◻ (𝑛 ⋅𝐻 𝑈) = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √1 −
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

〉 

 

 = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
1+(𝑛−1)𝑢𝑖𝑗

3 −𝑛𝑢𝑖𝑗
3

1+(𝑛−1)𝑢𝑖𝑗
3

3

〉 

 

 = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
1+𝑛𝑢𝑖𝑗

3 −𝑢𝑖𝑗
3 −𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

〉 
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 ◻ (𝑛 ⋅𝐻 𝑈) = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
1−𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

〉. (19) 

Again,  

 𝑛 ⋅𝐻 (◻ 𝑈) = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
1−𝑢𝑖𝑗

3

𝑛−(𝑛−1)(1−𝑢𝑖𝑗
3 )

3

〉 

 = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
1−𝑢𝑖𝑗

3

𝑛−𝑛+𝑛𝑢𝑖𝑗
3 +1−𝑢𝑖𝑗

3

3

〉 

 𝑛 ⋅𝐻 (◻ 𝑈) = 〈√
𝑛𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

, √
1−𝑢𝑖𝑗

3

1+(𝑛−1)𝑢𝑖𝑗
3

3

〉. (20) 

 ◻ (𝑛 ⋅𝐻 𝑈) = 𝑛 ⋅𝐻 (◻ 𝑈). 
Other proofs are similar. 

 

8. Conclusion 

In this paper, Hamacher operations for PFMs were formulated based on the principles of 

PFMs. Their algebraic properties were explored, and it was demonstrated that the set of all 

PFMs, under Hamacher addition and multiplication, constitutes a commutative monoid. 

The algebraic structure of PFMs under Hamacher operations was examined, providing 

deep insights into their practical applications. Additionally, the validity of De Morgan laws 

was confirmed. 

Hamacher operations were also extended to the Fermatean fuzzy framework in this 

research. Hamacher operations for FFMs were developed and analyzed, and their algebraic 

properties were examined. It was shown that the set of FFMs, under Hamacher addition 

and multiplication, also forms a commutative monoid. The algebraic structure of 

Fermatean fuzzy matrices under Hamacher operations was studied, offering significant 

insights into their practical applications. Furthermore, the validity of De Morgan laws was 

confirmed. Scalar multiplication and exponentiation operations on FFMs were introduced, 

and their algebraic properties were examined. Finally, several properties of necessity and 

possibility operators applied to FFMs were verified. 

It should be noted that the Hamacher operations for FFMs presented here hold 

potential for future applications in the aggregation of Fermatean fuzzy information. 
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