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Abstract. In this paper, we introduce the diametral coveninghber of a graph. A subset
Sof V(G) is said to be a diametral cover ®if every diametral path d& contains at least
one vertex ofS. The minimum cardinality o8 taken over all diametral covers is called
the diametral covering number & and is denoted by4(G). Here we have given the
diametral covering number of several classes gbptggaand have given bounds for the
same in terms of basic graph parameters. Also, amacterization of graphs having
particular diametral covering number is given.
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1. Introduction

Covering problem in graph theory is not new. Thare different types of covers that
exist in literature, vertices to cover verticesedges, or vice-versa. A lucid survey due to
Manlove [8] lists all of them. Precisely, the covgive rise to many famous graph
parameters, viz., vertex domination, edge dominatiertex cover, edge cover, etc., [1, 3,
4, 9, 11]. The theory of domination needs no iniitbn. Volumes of monographs and
scores of papers are available in literature. Thistnfamous monographs are due to
Haynes et al. [6, 7]. We know that a vertex coveaqraph is a set of vertices that
includes at least one endpoint of every edge ofgtheh. It is a classical optimization
problem to find a minimum vertex cover and is aidgp example of arNP-hard
optimization problem. One of Karp's 2IP-complete problems is the decision version of
the minimum vertex cover, and is therefore a otadsNP-complete problem in
computational complexity theory. The minimum vertewer problem can be formulated
as a half-integral linear program whose dual lingargram is the maximum matching
problem.

On the other hand, an edge cover is a set of dtlgesovers all the vertices in a
graph. These were first considered by Norman an8inR§l0]. The algorithmic
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complexity issues of both vertex and edge coversansidered by Fernau and Manlove
[4], where the clustering properties are addresfgatithmically.
The subclass of covering problems congjstihpath coverings are the geodesic

covering problem, the induced path covering probleto. All these coverings that deal
with paths, in particular those involving geodesiesre found to have applications in
optimal transport flow in social networks. A reldtproblem called strong edge geodetic
problem was introduced and studied by Manual g§8al.

Inspired by all these here we define andlysta parameter called “diametral
covering number” of a graph. This parameter originafrom practical situation, like
most of the covering problems. This caters to teeds to cover the longest paths, the
diametral paths in a graph, so as to cover theffaxodes and the roads connecting them
in any network. The study of vertices in any diametover may be viewed as utility
centers, such as, fuel station, service statiom, ggation, etc. In any transport system
prevailing in a particular region, where vehiclegvel from one end to the other end,
these utility centers need to be accessed byedktdiametral paths. Hence, any transport
operator always looks to minimize cost and maxinaidlity, in establishing the utility
centers. Addressing such situations, we defingigmmetral cover of a graph wherein the
peripheral vertices may be considered as far eigiherand destination and vertices in
the diametral cover, where one can establish tikinters. We formally define it in this
paper and consider bounds for the same. Some ¢hidrations are also found. But first
some preliminaries are considered.

2. Basics
All the graphs considered in this paper are simfitéte, and undirected. For all the
undefined terms, the reader is referred to Buclley Harary [2] and Harary [5].

Definition 2.1. [5] A vertex is said to cover an edge if it is incideith that edge. A set of
vertices which covers all the edges of a graph @alkked a vertex cover for G. The
smallest number of vertices in any vertex coverdas called its vertex covering number
and is denoted byy(G).

Definition 2.2. [5] An edge is said to cover a vertex if it is an eedex of that edge. A
set of edges which covers all the vertices of plyi@ is called an edge cover for G. The
smallest number of edges in any edge cover foraalied its edge covering humber and
is denoted by,(G).

Definition 2.3. [5] A set of vertices in G is said to be independenbifwo of them are
adjacent. The largest number of vertices in sudetais called the vertex independence

number of G and is denoted £yG).

Definition 2.4. [5] A set of edges in G is independent if no two ohttaee incident. The
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largest number of edges in such a set is callectige independence number of G and is
denoted by (G).

Definition 2.5. [2] The distance between two vertices in a graph imtimaber of edges
in a shortest path connecting them. This is alsited as the geodesic distance. Then
length of the maximum geodesic in a given graptalked the diameter, denoted by d.
The length of the minimum geodesic in a given gigghlled the radius, denoted by .

Definition 2.6. [2] The eccentricity @) of a vertex v is the greatest distance between v
and any other vertex, that i$v =min,,¢,, d(u, v).

Definition 2.7. [2] A peripheral vertex in a graph of diameter d is dhat is distance d
from some other vertex, that is, a vertex that esb$ the diameter. Formally, v is
peripheral if €v) =d.

Definition 2.8. [2] A geodetic cover of G is a setcSV (G) such that every vertex of G is
contained in a geodesic joining some pair of vedith S. The geodetic numbe(@hof

G is the minimum order of its geodetic covers, amygl cover of order &) is a geodetic
basis.

3. Diametral covering number of a graph
In this section we formally introduce the concefptliametral cover.

Definition 3.1. A subset S of \G) is said to be a diametral cover in a graph G ifgve
diametral path of G contains at least one verte$.0fThe minimum cardinality of S taken
over all diametral covers is called the diametralering number of G and is denoted by
O'd(G).

Remark 1. It is clear from the definition th&& cannot be empty, thatdg (G) # 0, as the
vertices of the periphery & can cover at least one diametral path at a timeases
where non-peripheral vertices Gfdo not explicitly exist to cover a diametral patther
than the peripheral vertices (of course), thenaandiral cover contains the vertices of
periphery ofG, P(G). itself. Here also we consider the minimum caadiy of such a
coverS.

Alternately we can define the diametral cover dievs:

Definition 3.2. Let I¢(u,v) = {w €V (G) / w lies on a shortest u,
v path in G, for any two peripheral vertices u, v}. If w € I¢(u,v), thendiam (G) = d
(u, W) +d (w, V). HenceS= {w/w € I¢(u,v) , u, V€ P(G)} is a diametral cover dB.

The minimum cardinality ofs taken over all diametral covers is called the dizate
covering number ofs and is denoted hyy(G).
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Remark 2. If no suchw exists, then it is clear that either worw =v.

Example 3.1.

V. a's Va

- 5 CR a .

Vs . 4 Figure 2 Figure 3
Figure 1

In Figure 1, we ha\@& = {Vvi, Vo, Va}, S ={V1, Vo, o}, S={v1, 5, g} andS, = {v,,
V3, V4. It has four diametral covers of minimum carditathree. Thereforezq (G) = 3.

In Figure 2, we hav@& = {vi, o}, S = {V1, W5}, S = {Vo, Va}, S ={Vo, 5} andS
={vs, W} It has five diametral covers of minimum carditiatwo. Thereforesy (G) = 2

In Figure 3, we ha® = {vo} and$; = {vs, v4}. It has two diametral covers. The
minimum cardinality of diametral covers is one. fidfere,oy(G) =1

In the first section we obtain diametralenng number of certain familiar class of
graphs, namelyK,-complete graphC,-cycle, P.-path, T-tree, K, -complete bipartite
graph Kp,, + Km, + K, + -+ K_md -graph Also we show existence of a graph with
given diametral covering number. We find upper boweer bounds fowg (G), in case of
unicyclic graphs in terms of the length of the eyitlcontains. Lastly, we find upper and
lower bounds for size of a graph, in terms&{G), d(G) and orden.

Theorem 3.1. In any connected graph G,df(G) = 1, then G has a cut vertex.

Proof: Let us consider a grapB with o4 (G) = 1. Hence, there exists a vertex, say
which is on every diametral path, joining any tweripheral vertices, sayandw. Then
there cannot be a diametral path joining thesdcesrinG-v. ThenG-v is disconnected,
sovis a cut vertex of.

Remark 3. Converse need not be true, which follows from tkemnaple below.

Vi Vi Vs Va4

le

’ Figure 4
In Figure 4y, andvs; are cut vertices bu§ = {v,, v} is a diametral cover of

cardinality two. Thereforesy (G) = 2.

Lemma3.1. For any tree Tgyq(T) =1
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Proof: Consider any tre& on n-vertices. In any tree, every pair of peripheratices is
joined by unique path (of length diameter). Andhediametral path passes through
center of tree. Hence one central vertex is endagtover all diametral paths. Hence
ad(T) <1. But, o4(T) >1, holding the equality.

Corollary 3.1. For any path R, a4(Pn) =

Lemma 3.2. For any complete gragf,, onn-verticesoq(K,) =n- 1.
Proof: Sincediam(K,) = 1, all vertices are in the periphery®f So we need at least-
1 vertices to cover all diametral paths.

Lemma 3.3. For a cycle G, 04(C,) = 2
Proof: We give proof for cycles depending upon the lergjtthe cycle.
Case (i): Let the cycle be of even length.

Consider any vertex, say, of C,. The eccentricity ofi;, e(u,) is equalto the
diameter ofC,, and the vertex at distanadiam(C,) = from up to un , There are

two diametral paths joining these two vertices. (imeil, W, ... ,un,ug+1 and
2

another iy, W, ... un . So two ofn-diametral paths contam

+2'
Sou, €8S.

Now consider the diametral path, u,, u,, ..., ug; Up—1, Up, U, Up, v, u§—3 ug_zrug

— )
v 1

Up—2, Up—1, Up, Ug, Uz, -, Un_ 3un gieees Uz, Ug, Ug, oo, Un o AN
2 2

Uy, Uq, Uy, -, Un . Note that all these paths contain Note that all these paths

+1'
2

un,un_lrun_z,.. URypp U Uy Ung Un—2, oo Ulyy, Un, Un_y, Un

S+ —1r YR g5
. u4,u3,u2, do not haveu;. Hence

sy

Un_ ., uUn, , U u4,u3 and Un u

%+3l +2' +1’
O'd(Cn) >1 = O'd(Cn) > 2.

But the second set of diametral path hawe, in common. So to cover all
2

i Un, 4,
2+2 2+1

diametral paths we need to haver
2

giving g4(C,,) < 2. Hence equality holds.

in S. HenceugJr1 €S and S = {ul’ugﬂ}

Case (ii): Let the cycle be of odd length.

Consider any vertex, say, of C,. The eccentricity ofi;, e(u;) is equal to the diameter
of C,, and there are two eccentric vertices fay namely,uln] anduH“' So there are
2 2

two diametral paths joining these two verticesutg i.e., uy, u,, us, ...,u[EJ_l,uH and
2

Uq, Uy, -y U[§J+2,Ulgl+1.

Now consider the diametral paths,, u4, u,, ""u[EJ—Z’u[EJ—l; Up_1,
2 2
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un,ul,uz,...,uEJ_g,uEJ_Z; ;ug,,uz,ul,...,uEJM,uEJ+3 and
Uy, Ug, Up, ""uEJ“'uEJ“' Note that all these paths havecommon.

On the other hand, the pathsu,,_1, u,,—2, ...,ulﬁjﬂ,uH;
2 2

Up—1,Up-2, ...,u[§J+2,u[§J+1;...; ul§J+2,ul§J+1, uEJ, v, Uy, Uz and

uEJH, uEJ' ., Uy, U3, Uy; O NOt have,.

Henceo,;(C,) > 1 = 0,4(C,) = 2.
But this set contains bo'lH+2 anduH+1 is common. So at least one must be included
2 2

in S, for minimality. Hences = {ul'uH”} or S = {ul,UlEJ_l_l} =0,(Cp) < 2.
2 2

Holding equality, and proving the result.

Proposition 3.1. For any positive n, there exists a graph G, wit{G) = n and diameter
d.
Proof: Let n be any positive integer. L&b be a connected graph with andv as

peripheral vertices. Since we are constructhgvith o4 (G) = n, there are at least
distinct diametral paths betweenandv. We considerd— 1 setsVi, V,, - - -, .1 0fn
vertices each. Laty={u}andVy ={v}. In G, any two vertices, sayandy are adjacent if
x andy belong to two consecutive s&sof v(G), that is, ifx €V (G), say thexy € E(G) if
and only if eithely € Vi_.; ory € V..;. The longest path will be betwearandv of length
diameter,d(G) = d. Let u be adjacent to all vertices & and all vertices oVy-; be
adjacent te.

Hence, there are at leadlistinct diametral paths betweearandv, of the typeu -
W, —v, wherew €V, 1<i<d-1, 1<j <n. So we need at mostvertices to cover all
diametral paths, implyings (G) <n. Any one seV,, 1<i <d - 1 is sufficient to cover all
paths.

To show thaty (G) > n, assume, if possible, thefG) =n - 1. Then there exists at
least one vertex, saa) €V, 1< i < d-1, 1< j < n, for which diametral paths

vl"vzj ...v{'_lv{'v{;l ...vé_l do not contain any vertex & contradicting the definition of
the diametral cover. Hence any vertexSptontradicting the definition of the diametral

cover. Hencey(G) > n, and proving equality.

Proposition 3.2. For any unicyclic grapks, 1 < o4(G) SBJ wherenis the length of the

cycle of G.

Proof: Let G be a unicyclic graph of ordex Let C, be the cycle ofs. We proceed the
proof by considering vertices at which paths atacaed.

If only one vertex, sayu;, of C, has a path starting from it (except cyclic
adjacencies). This path is of length n on p — n vertices. Letv; be adjacent ta, and
consequently tas, V5, - - -, ¥n-1, Vo-n IN G, each diametral path contains this path of

6



Diametral Covering Number of a Graph

lengthp — n, as a sub-path and hengeis sufficient to cover all diametral paths. Since
a4(G) > 1 for anyG, proving the first inequality.
If there exist diametral paths all of whiatnsist sub-paths attached to vertices of

the cycle, then we need at least half the verideke cycle to cover all diametral paths.

Hence ifn is even then K o4G) < % and ifn is odd thenl < g,4(G) < nTH is1<

Both bound are attainable, lower bound isaly discussed in the theorem. The
upper bound is attained by corona of a c&le

Proposition 33. For a graph G =Ky, + Ky, + Ky, + - +K_md, 04(G) =
min,<;<q_1{m;}, where mare the order of the partite sets of G.
Proof: Clearly, by the structure of the graph, the diaalgiaths are between vertices of
Vi, @andV,, .. And all these diametral paths contain all vegioéV,,, , V., , - - - Vi, .-
Hence

04(G) < minygi<q—1{m;} (3.1)
Now, let us denote the verticesigf, = {vn,, v, ...,v,,’fi"_l,v,’:ii} where Ki<d, d=
diam (G). Let m; be the minimum index among,. If possible, let us assume that a

diametral cover contains less vertices thgn Hence, there exists at least one vertex, say

”r]nk , of I, which does not belong to any diametral cover. Nbare exists a path

starting from a vertex o, , SaYP; = {Un, Vi, s Vi1 Vingr Vmgaar -+ Ving_y» Vg }

of lengthd = diam(G). So P; is a diametral path which contain,ék, a contradiction.

So there cannot be any vertex left outjgf to form S, otherwise there will be diametral
paths which do not contain verticessHence
04(G) = minygi<q—1{m;} (3.2)
The result follows from (3.1) and (3.2

The following corollary gives the diametral coveyimumber of a complete bipartite
graph.

Corollary 3.2. For a complete bipartite graphX, gq(Km,») =min{m, r}.

Proposition 3.4. Let G be a connected graph widy(G) = k. Let the number of
peripheral vertices db bem, then for the complemerﬁ_i of G, we haved (E) <sm

Proof. Given G a connected graph witty(G) = k. Let us denote the set of peripheral
vertices byP, hence|P | = m. Sinceoy(G) = k, there are at leadt-disjoint diametral

paths. ButP (G) induces a connecteslibgraphin G. Henceat most,the numberof
peripheralverticesin G arep — m and each ofm vertices lies on at most on two of the
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paths joiningp — mvertices. Since thege— mvertices are possible peripheral vertiges

G, the number of vertices needed to cover all diamhetrths is amostm. Hencead((_S) <
m.

Theorem 3.2. For any graplG of orderp, diameterd, diametral covering number, size
d, the following holds for the size @3:
n2+3n+(p—n—d+1)(p—n—d+4)

d<qg<d-—4
ne=qs= Tt 2

Both bounds are attainable
Proof: Let G be a graph of ordey, sizeq, diam(d) =d, ¢4(G) =n. Sincesy(G) = n, there
are at leash distinct (except at diametral vertices) diametrhg. Hence we must have
at leasind edges, for a graph withy(G) = n, diam(G) = d. Henceqg > nd, establishing the
lower bound.

For the upper bound, keepmdG) = n, diam(G) = d, in mind one can distribute
- n vertices ind-(sub)sets, apart fro® a minimum diametral cover. Thus we can have a
partition ofV (G) into Sand otheid- subsets. Let us denote these se,ab<i <d, and
we notelAj| =k, 1<i <d. This partition is possible s eaghcontains at least one vertex
to maintain thediam(G) = d, that is,k; > 1. SinceSis a minimum diametral cover,k; >
n, 1<i<d. SoG will have at most] edges,

q=0)+2L(%) + 28 kikigq +nk; + ki,

as eaclA;) would be completeSwould be complete and each pair of subsequeniAgets
Ai+1 would be of the sequential join type. Thus

HEE (Z‘ ' ) Zkkl+1+n(k + ki)

>.(2)=(3")

Now the sum of producf?-! k;k;, is maximum, if both terms of product are the same,
that is,k; = k;,,. Keeping both in mind, we g&%,k;=p—-n—(m—1), aswe
have to have at least one vertex in

each of4;’s, to maintain the diameter akd= k;,; = 1 for (d — 1)- 4;’s.

as

”F4a
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G=K +K +. .+ K +K +K +K +. +K +K .+
a-times b-times
K, +K, +...+K;
c-times
In all there aral + 1 subsets to maintain the diameter, hence therédarel) copies of
Ki;.Hencea+b+c+1=d.

So we get,
n p—n—d+1
qSa—1+n+(2)+n+b—1+p—n—d+1+( ) )+p—n—d
+1+c—-1
n -n—d+1
=a+b+c—3+2n+(2)+2(p—n—d+1)+(p )

nn-1) , (p—n—-d+1)(p—n-d)

=d-D+2n+2(p-—n-d+D+——+ >

2 _ n— _n— n—
=d _4+n +;n n+4(p n d+1)+(p2n d+1)(p—n—-d)

2 - - —_— —
—d—4+7" ;3n+(P n d+1)2(p n d+4)'

This bound is attained by the graph given aboveismdmaximal graph with respect
to the diam(G), as the only possible edges are betwdeand Ay wherei andj are
consecutive indices is the maximum graph witt G) = d, 6(G) = n, havingq edges,
n2+3n+(p—n—d+1)(p—n—d+4)

<d-—4
1= T 2

as we have considered all conditions for each tefrthe summation for edges to be
maximum.

The lower bound is attained by everley,

Next, we take note of some edge operations on idmaedral covering number. The
most fundamental operations being the edge delationcontraction. We denote an edge
contraction byG/e, for any edgee in G. And the next result shows the effect of edge
contractions.

Theorem 3.3. For a connected acyclic graph @(G/e) = 1

Proof: Let G be a connected acyclic graph. Hence, by Lemrai2follows 64(G) = 1.
On contraction of any edge B, it gives the another tree, sy = G/e Therefore,gy
(Gle = 1.

Remark 4. (i) On contraction of any edge if, P,, C,, Ky, and S, , the diametral
covering number is unaltered.
(ii) On contraction of any edge i is diametral covering number is altered.
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Remark 5. On deletion of any edge i@, the diametral covering number is unaltered,
whereas deletion of any edgekinthe diametral covering number is altered.

4. Conclusion

In this paper we have introduced the diametral dogenumber of a graph. Here we have
given exact value of diametral covering number efesal classes of graphs and have
given bounds for the same in terms of basic graphrmpeters. Also given characterization
of graphs having particular diametral covering nemtSeveral other cases are being
considered in case of products of graphs, embedgiegtions with a particular diametral
covering number, relations with other covering pagters like different types of
domination number, vertex (edge) covering numbeodgtic number, etc.

Acknowledgement. We express gratitude and thank the unknown refdogesiggestions
that helped in improving the overall presentatibthe paper.
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