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Abstract. In this paper, we introduce the diametral covering number of a graph. A subset 
S of V(G) is said to be a diametral cover for G if every diametral path of G contains at least 
one vertex of S. The minimum cardinality of S taken over all diametral covers is called 
the diametral covering number of G and is denoted by σd(G). Here we have given the 
diametral covering number of several classes of graphs and have given bounds for the 
same in terms of basic graph parameters. Also, a characterization of graphs having 
particular diametral covering number is given. 
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1. Introduction 
Covering problem in graph theory is not new. There are different types of covers that 
exist in literature, vertices to cover vertices or edges, or vice-versa. A lucid survey due to 
Manlove [8] lists all of them. Precisely, the covers give rise to many famous graph 
parameters, viz., vertex domination, edge domination, vertex cover, edge cover, etc., [1, 3, 
4, 9, 11]. The theory of domination needs no introduction. Volumes of monographs and 
scores of papers are available in literature. The most famous monographs are due to 
Haynes et al. [6, 7]. We know that a vertex cover of a graph is a set of vertices that 
includes at least one endpoint of every edge of the graph.  It is a classical optimization 
problem to find a minimum vertex cover and is a typical example of an NP-hard 
optimization problem. One of Karp’s 21 NP-complete problems is the decision version of 
the minimum vertex cover, and is therefore a classical NP-complete problem in 
computational complexity theory. The minimum vertex cover problem can be formulated 
as a half-integral linear program whose dual linear program is the maximum matching 
problem. 

On the other hand, an edge cover is a set of edges that covers all the vertices in a 
graph. These were first considered by Norman and Rabin [10]. The algorithmic 
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complexity issues of both vertex and edge covers are considered by Fernau and Manlove 
[4], where the clustering properties are addressed algorithmically. 

        The subclass of covering problems consisting of path coverings are the geodesic 
covering problem, the induced path covering problem, etc. All these coverings that deal 
with paths, in particular those involving geodesics were found to have applications in 
optimal transport flow in social networks. A related problem called strong edge geodetic 
problem was introduced and studied by Manual et al. [9]. 

        Inspired by all these here we define and study a parameter called “diametral 
covering number” of a graph. This parameter originates from practical situation, like 
most of the covering problems. This caters to the needs to cover the longest paths, the 
diametral paths in a graph, so as to cover the far off nodes and the roads connecting them 
in any network. The study of vertices in any diametral cover may be viewed as utility 
centers, such as, fuel station, service station, gas station, etc. In any transport system 
prevailing in a particular region, where vehicles travel from one end to the other end, 
these utility centers need to be accessed by all these diametral paths. Hence, any transport 
operator always looks to minimize cost and maximize utility, in establishing the utility 
centers. Addressing such situations, we define the diametral cover of a graph wherein the 
peripheral vertices may be considered as far end origins and destination and vertices in 
the diametral cover, where one can establish utility centers. We formally define it in this 
paper and consider bounds for the same. Some characterizations are also found. But first 
some preliminaries are considered. 
 
2. Basics 
All the graphs considered in this paper are simple, finite, and undirected. For all the 
undefined terms, the reader is referred to Buckley and Harary [2] and Harary [5]. 

 
Definition 2.1. [5] A vertex is said to cover an edge if it is incident with that edge. A set of 
vertices which covers all the edges of a graph G is called a vertex cover for G. The 
smallest number of vertices in any vertex cover for G is called its vertex covering number 
and is denoted by α0(G). 
 
Definition 2.2. [5] An edge is said to cover a vertex if it is an end vertex of that edge. A 
set of edges which covers all the vertices of a graph G is called an edge cover for G. The 
smallest number of edges in any edge cover for G is called its edge covering number and 
is denoted by α1(G). 
 
Definition 2.3. [5] A set of vertices in G is said to be independent if no two of them are 
adjacent. The largest number of vertices in such a set is called the vertex independence 
number of G and is denoted by β0(G). 
 
Definition 2.4. [5] A set of edges in G is independent if no two of them are incident. The 
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largest number of edges in such a set is called the edge independence number of G and is 
denoted by β1(G). 
 
Definition 2.5. [2] The distance between two vertices in a graph is the number of edges 
in a shortest path connecting them.  This is also called as the geodesic distance. Then 
length of the maximum geodesic in a given graph is called the diameter, denoted by d. 
The length of the minimum geodesic in a given graph is called the radius, denoted by r. 
 
Definition 2.6. [2] The eccentricity e(v) of a vertex v is the greatest distance between v 
and any other vertex, that is e(v) =min�∈� ��	, ��. 
Definition 2.7. [2] A peripheral vertex in a graph of diameter d is one that is distance d 
from some other vertex, that is, a vertex that achieves the diameter. Formally, v is 
peripheral if e(v) = d. 
 
Definition 2.8. [2] A geodetic cover of G is a set S ⊂ V (G) such that every vertex of G is 
contained in a geodesic joining some pair of vertices in S.  The geodetic number gn(G) of 
G is the minimum order of its geodetic covers, and any cover of order gn(G) is a geodetic 
basis. 
 
3. Diametral covering number of a graph 
In this section we formally introduce the concept of diametral cover. 
 
Definition 3.1. A subset S of V (G) is said to be a diametral cover in a graph G if every 
diametral path of G contains at least one vertex of S.  The minimum cardinality of S taken 
over all diametral covers is called the diametral covering number of G and is denoted by 
σd(G). 
 
Remark 1. It is clear from the definition that S cannot be empty, that is σd (G) ≠ 0, as the 
vertices of the periphery of G can cover at least one   diametral path at a time. In cases 
where non-peripheral vertices of G do not explicitly exist to cover a diametral path, other 
than the peripheral vertices (of course), then a diametral cover contains the vertices of 
periphery of G, P(G). itself. Here also we consider the minimum cardinality of such a 
cover S. 
Alternately we can define the diametral cover as follows: 
 
Definition 3.2. Let  ����	, ��  =  {� ∈ � ��� / � lies on a shortest 	,  
� path in �, for any two peripheral vertices 	, �}. If  � ∈ ����	, ��, then diam (G) = d 

(u, w) + d (w, v). Hence S = {w/ � ∈ ����	, �� , u, v ∈ P(G)} is a diametral cover of G. 
The minimum cardinality of S taken over all diametral covers is called the diametral 

covering number of G and is denoted by σd(G). 
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Remark 2. If no such w exists, then it is clear that either u = w or w = v. 
 
Example 3.1. 
 

        In Figure 1, we have S1 = {v1, v2, v3}, S2 = {v1, v2, v4},  S3 = {v1, v3, v4}  and S4 = {v2, 
v3, v4}. It has four diametral covers of minimum cardinality three. Therefore, σd (G) = 3. 

        In Figure 2, we have S1 = {v1, v4}, S2 = {v1, v5}, S3 = {v2, v4},  S4 = {v2, v3}  and S5 
= {v3, v5}. It has five diametral covers of minimum cardinality two. Therefore. σd (G) = 2. 

 
        In Figure 3, we have S1 = {v2}  and S2 = {v3, v4}. It has two diametral covers. The 

minimum cardinality of diametral covers is one. Therefore, σd (G) = 1. 
        In the first section we obtain diametral covering number of certain familiar class of 

graphs, namely, Kn-complete graph, Cn-cycle, Pn-path, T- tree, Km,n-complete bipartite 

graph, )*+,,,,, - )*.,,,,, - )*/,,,,, - ⋯ - )*1,,,,,, -graph  Also we show existence of a graph with 

given diametral covering number. We find upper and lower bounds for σd (G), in case of 
unicyclic graphs in terms of the length of the cycle it contains. Lastly, we find upper and 
lower bounds for size of a graph, in terms of σd (G), d(G) and order n. 

 
Theorem 3.1. In any connected graph G, if σd (G) = 1, then G has a cut vertex. 
Proof: Let us consider a graph G with σd (G) = 1. Hence, there exists a vertex, say v, 
which is on every diametral path, joining any two peripheral vertices, say u and w. Then 
there cannot be a diametral path joining these vertices in G−v. Then G−v is disconnected, 
so v is a cut vertex of G. 
 
Remark 3. Converse need not be true, which follows from the example below.          
                     

         In Figure 4, v2 and v3 are cut vertices but, S = {v2, v3}  is a diametral cover of 
cardinality two. Therefore, σd (G) = 2. 

Lemma 3.1. For any tree T, σd (T ) = 1. 
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Proof: Consider any tree T on n-vertices. In any tree, every pair of peripheral vertices is 
joined by unique path (of length diameter). And each diametral path passes through 
center of tree. Hence one central vertex is enough to cover all diametral paths. Hence 
σd(T) ≤ 1. But,  σd(T ) ≥ 1, holding the equality. 

Corollary 3.1. For any path Pn, σd(Pn) = 1. 

Lemma 3.2. For any complete graph Kn, on n-vertices, σd (Kn) = n − 1. 
Proof: Since diam (Kn) = 1, all vertices are in the periphery of G. So we need at least n − 
1 vertices to cover all diametral paths. 
 
Lemma 3.3. For a cycle Cn, σd (Cn) = 2. 
Proof: We give proof for cycles depending upon the length of the   cycle. 
Case (i): Let the cycle be of even length. 
 
         Consider any vertex, say u1, of Cn. The eccentricity of u1, e(u1) is equal to the 
diameter of Cn and the vertex at distance, diam(Cn) =

2
3, from u1 to 	4

.56 There are 

two diametral paths joining these two vertices. One is u1, u2, … ,	4
. , 	4

.56  and 

another is u1, un, … ,	4
.53, 	4

.56.  So two of n-diametral paths contain u1. 

So  	6 ∈ 7. 
Now consider the diametral path 	2, 	6, 	3, … , 	4

.; 	2:6, 	2, 	6, 	3, … , 	4
.:;,	4

.:3,	4
.:6; 

 	2:3, 	2:6, 	2, 	6, 	3, … , 	4
.:;,	4

.:3;…, 	;, 	3, 	6, … , 	4
.5; and  

	3, 	6, 	2, … , 	4
.56, 	4

.53. Note that all these paths contain u1. Note that all these paths 

	2, 	2:6,	2:3, … , 	4
.56, 	4

. , 	4
.:6; 	2:6,	2:3, … , 	4

.56, 	4
. , 	4

.:6, 	4
.:3;…, 

	4
.5;, 	4

.53, 	4
.56, … , 	<, 	; and  	4

.53, 	4
.56, … , 	<, 	;, 	3; do not have u1. Hence 

=��>2� > 1  ⇒ =��>2� ≥ 2. 
But the second set of diametral path have 	4

.56  in common. So to cover all 

diametral paths we need to have  	4
.56 in S. Hence 	4

.56 ∈ 7 and 7 = {	6, 	4
.56} 

giving =��>2� ≤ 2. Hence equality holds. 
 
Case (ii): Let the cycle be of odd length. 
 
Consider any vertex, say 	6, of >2. The eccentricity of 	6, E�	6� is equal to the diameter 
of >2 and there are two eccentric vertices for   	6 namely, 	F4

.G and 	F4
.G56.  So there are 

two diametral paths joining these two vertices to  	6, i.e., 	6, 	3, 	;, … , 	F4
.G:6, 	F4

.G and 

	6, 	2, … , 	F4
.G53, 	F4

.G56. 

Now consider the diametral paths  	2, 	6, 	3, … , 	F4
.G:3, 	F4

.G:6; 	2:6, 
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 	2, 	6, 	3, … , 	F4
.G:;, 	F4

.G:3; … ; 	;, 	3, 	6, … , 	F4
.G5<, 	F4

.G5; and  

 	3, 	6, 	2, … , 	F4
.G5;, 	F4

.G53. Note that all these paths have 	6 common.  

            On the other hand, the paths 	2, 	2:6, 	2:3, … , 	F4
.G56, 	F4

.G;  
	2:6, 	2:3, … , 	F4

.G53, 	F4
.G56;…; 	F4

.G53, 	F4
.G56, 	F4

.G, … , 	<, 	; and  

 	F4
.G56, 	F4

.G, … , 	<, 	;, 	3;  do not have u1.  

Hence =��>2� > 1  ⇒ =��>2� ≥ 2. 
But this set contains both 	F4

.G53 and 	F4
.G56  is common. So at least one must be included 

in S, for minimality. Hence 7 = {	6, 	F4
.G53} or  7 = {	6, 	F4

.G56} ⇒ =��>2� ≤ 2. 
Holding equality, and proving the result. 
 
Proposition 3.1. For any positive n, there exists a graph G, with  σd (G) = n and diameter 
d. 
Proof: Let n be any positive integer. Let G be a connected graph with u and v as 
peripheral vertices. Since we are constructing G with σd (G) = n, there are at least n 
distinct diametral paths between u and v. We consider d− 1 sets, V1, V2, · · · , Vd−1 of n 
vertices each. Let V0 = {u} and Vd = {v}. In G, any two vertices, say x and y are adjacent if 
x and y belong to two consecutive sets Vi of v(G), that is, if x ∈ V (G), say then xy ∈ E(G) if 
and only if either y ∈ Vi− 1 or y ∈ Vi+1. The longest path will be between u and v of length 
diameter, d(G) = d. Let u be adjacent to all vertices of V1 and all vertices of Vd−1 be 
adjacent to v. 

     Hence, there are at least n distinct diametral paths between u and v, of the type u − 
wj

i − v, where wi
j ∈ Vi, 1 ≤ i ≤ d − 1, 1 ≤ j ≤ n. So we need at most n vertices to cover all 

diametral paths, implying σd (G) ≤ n. Any one set Vi, 1 ≤ i ≤ d − 1 is sufficient to cover all 
paths. 

     To show that σd (G) ≥ n, assume, if possible, that σ(G) = n − 1.   Then there exists at 
least one vertex,  say vi

j ∈  Vi,  1 ≤  i  ≤  d − 1,  1 ≤  j ≤  n, for which diametral paths  

�6H�3H … �I:6H �IH�I56H … ��:6H  do not contain any vertex of S, contradicting the definition of 
the diametral cover. Hence any vertex of S, contradicting the definition of the diametral 
cover.  Hence σd (G) ≥ n, and proving equality. 

 

Proposition 3.2.  For any unicyclic graph G, 1 ≤ σd(G) ≤F2
3G, where n is the length of the 

cycle of G. 
Proof: Let G be a unicyclic graph of order p. Let Cn be the cycle of G. We proceed the 
proof by considering vertices at which paths are attached. 
If only one vertex, say u1, of Cn has a path starting from it (except cyclic                                   
adjacencies). This path is of length p − n on p − n vertices. Let v1 be adjacent to u1 and 
consequently to v2, v3, · · · , vp−n−1, vp−n. In G, each diametral path contains this path of 
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length p − n, as a sub-path and hence u1 is sufficient to cover all diametral paths. Since 
σd(G) ≥ 1 for any G, proving the first inequality. 

      If there exist diametral paths all of which consist sub-paths attached to vertices of 
the cycle, then we need at least half the vertices of the cycle to cover all diametral paths. 

Hence if n is even then 1 ≤ σd(G) ≤ 
2
3 and if n is odd then 1 ≤ =���� ≤ 256

3 , is 1 ≤
=���� ≤ F2

3G.  
      Both bound are attainable, lower bound is already discussed in the  theorem. The 

upper bound is attained by corona of a cycle C+. 
 

Proposition 3.3. For a graph � = )*+,,,,, - )*.,,,,, - )*/,,,,, -⋯+ )*1
,,,,,,, =�(�) =

min3JIJ�:6{KI}, where mi are the order of the partite sets of G. 
Proof: Clearly, by the structure of the graph, the diametral paths are between vertices of 
�*+ and �*1

. And all these diametral paths contain all vertices of �*. , �*/ , · · · , �*1L+
. 

Hence 
                          =�(�) ≤ min3JIJ�:6{KI}                 (3.1) 

Now, let us denote the vertices of �*M
= {�*M

6 , �*M

3 , … , �*M

*M:6, �*M

*M} where 1≤ N ≤ �,  d = 

diam (G). Let KO be the minimum index among KI. If possible, let us assume that a 
diametral cover contains less vertices than KO. Hence, there exists at least one vertex, say 

�*P

H  , of �*P
 which does not belong to any diametral cover. Now there exists a path 

starting from a vertex of  �*+
, say Q6 = {�*+

6 , �*.

6 , … , �*PL+

6 , �*P

H
, �*PR+

6 , … , �*1L+

6 , �*1

6 } 

of length � = �NSK(�). So Q6 is a diametral path which contains �*P

H , a contradiction. 

So there cannot be any vertex left out of �*P
 to form S, otherwise there will be diametral 

paths which do not contain vertices of S. Hence 
                      =�(�) ≥ min3JIJ�:6{KI}                          (3 .2) 

             The result follows from (3.1) and (3.2). 
            
The following corollary gives the diametral covering number of a complete bipartite 
graph.  
 
Corollary 3.2. For a complete bipartite graph Km,n, σd(Km,n) = min{m, n} . 
 
Proposition 3.4. Let G be a connected graph with σd(G) = k. Let the number of 

peripheral vertices of G be m, then for the complement G   of G, we have .)( mGd ≤σ  

Proof. Given G a connected graph with σd(G) = k. Let us denote the set of peripheral 
vertices by P, hence |P | = m. Since σd(G) = k, there are at least k-disjoint diametral 

paths. But P (G) induces a connected subgraph in Ḡ.  Hence at most, the number of 

peripheral vertices in Ḡ are p − m and each of m vertices lies on at most on two of the 
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paths joining  p − m vertices. Since these p − m vertices are possible peripheral vertices in 

Ḡ, the number of vertices needed to cover all diametral paths is at most m. Hence σd(Ḡ) ≤ 
m. 
 
Theorem 3.2. For any graph G of order p, diameter d, diametral covering number n, size 
q, the following holds for the size of G: 

T� ≤ U ≤ � − 4 - T3 - 3T
2 - �Y − T − � - 1��Y − T − � - 4�

2 . 
Both bounds are attainable. 
Proof: Let G be a graph of order p, size q, diam(d) = d, σd(G) = n. Since σd (G) = n, there 
are at least n distinct (except at diametral vertices) diametral paths. Hence we must have 
at least nd edges, for a graph with σd(G) = n, diam(G) = d. Hence q ≥ nd, establishing the 
lower bound. 
         For the upper bound, keeping σd (G) = n, diam (G) = d, in mind one can distribute p 
− n vertices in d-(sub)sets, apart from S, a minimum diametral cover. Thus we can have a 
partition of V (G) into S and other d- subsets. Let us denote these sets as Ai, 1 ≤ i ≤ d, and 
we note |Ai| = ki, 1 ≤ i ≤ d. This partition is possible s each Ai contains at least one vertex 
to maintain the diam(G) = d, that is, ki ≥ 1. Since S is a minimum diametral cover,    ki  ≥ 
n, 1 ≤ i ≤ d. So G will have at most q edges, 
 

U = Z23[ - ∑ ZOM3 [ - ∑ ]I]I56 -�:6I^6�I^6 T]I - T]I56, 

 
as each 〈`I〉 would be complete, S would be complete and each pair of subsequent sets Ai, 
Ai+1 would be of the sequential join type. Thus 

U ≤ bT
2c - d∑ ]I�I^62 e - f ]I]I56 -

�:6

I^6
T�]I - ]I56� 

 
as 

f g]I2 h ≤
�

I^6
d∑ ]I�I^62 e. 

 

Now the sum of products ∑ ]I]I56�:6I^6  is maximum, if both terms of product are the same, 

that is, ]I = ]I56.   Keeping both in mind,  we get ∑ ]I = Y − T − �T − 1��I^6 ,   as we 
have to have at least one vertex in  
each of ̀ I’s, to maintain the diameter and ]I = ]I56 = 1 for �� − 1�- `I’s. 
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In all there are d + 1 subsets to maintain the diameter, hence there are (d − 1) copies of 
K1. Hence a + b + c + 1 = d. 
So we get, 

U ≤ S − 1 - T - bT
2c - T - i − 1 - Y − T − � - 1 - gY − T − � - 1

2 h -  Y − T − �
- 1 - j − 1   

  = S - i - j − 3 - 2T - bT
2c - 2�Y − T − � - 1� - gY − T − � - 1

2 h 

  = �� − 4� - 2T - 2�Y − T − � - 1� - 2�2:6�
3 - �k:2:�56��k:2:��

3  

  = � − 4 - 2.5<2:2
3 - <�k:2:�56�5�k:2:�56��k:2:��

3   

  = � − 4 - 2.5;2
3 - �k:2:�56��k:2:�5<�

3 .  
              

This bound is attained by the graph given above and is a maximal graph with respect 
to the diam(G), as the only possible edges are between Ai and Aj where i and j are 
consecutive indices. G is the maximum graph with d(G) = d, σ(G) =       n, having q edges, 

U ≤ � − 4 - T3 - 3T
2 - �Y − T − � - 1��Y − T − � - 4�

2  

 
as we have considered all conditions for each term of the summation for edges to be 
maximum. 

 
             The lower bound is attained by even cycles. 

 
Next, we take note of some edge operations on the diametral covering number. The 

most fundamental operations being the edge deletion and contraction. We denote an edge 
contraction by G/e, for any edge e in G. And the next result shows the effect of edge 
contractions. 
 
Theorem 3.3. For a connected acyclic graph G, σd(G/e) = 1. 
Proof: Let G be a connected acyclic graph. Hence, by Lemma 2.1, it follows σd(G) = 1. 
On contraction of any edge in G, it gives the another  tree, say G’ = G/e. Therefore, σd 

(G/e) = 1. 
 
Remark 4. (i) On contraction of any edge in T, Pn, Cn, K1,n and Sm,n the diametral 
covering number is unaltered. 
(ii) On contraction of any edge in Kn is diametral covering number is altered. 
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Remark 5. On deletion of any edge in Cn the diametral covering number is unaltered, 
whereas deletion of any edge in Kn the diametral covering number is altered. 
 
4. Conclusion 
In this paper we have introduced the diametral covering number of a graph. Here we have 
given exact value of diametral covering number of several classes of graphs and have 
given bounds for the same in terms of basic graph parameters. Also given characterization 
of graphs having particular diametral covering number. Several other cases are being 
considered in case of products of graphs, embedding questions with a particular diametral 
covering number, relations with other covering parameters like different types of 
domination number, vertex (edge) covering number, geodetic number, etc. 
        
Acknowledgement. We express gratitude and thank the unknown referees for suggestions 
that helped in improving the overall presentation of the paper.  
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