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Abstract. In this paper, we study the existence of positive solutions for a class of fourth-

order two-point boundary value problems:  

�(�)(�) = ���(�)	,      � ∈ 
0,1�, 
�(0) = �(1) = ��(0) = ��(1) = 0. 

where �: � → 
0, ∞)  is continuous. When the nonlinear f satisfies appropriate growth 

conditions, the problem is transformed into the existence of fixed points of a fully 

continuous operator on a special cone by using the properties of Green's function. By using 

the generalized Leggett-Williams fixed point theorem, we obtain that there are at least three 

symmetric solutions to the problem. 

Keywords: Boundary value problem, greens function, multiple solution, fixed point 

theorem. 
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1. Introduction 

In the past 20 years, there has been attention focused on the existence of positive solutions 

to boundary value problems for ordinary differential equations, see [1-8]. In 2012, Sun and 

Zhao [9] proved the existence of three positive solutions for a third-order three-point BVP 

with sign-changing Green’s function by apply the Leggett-Williams fixed point theorem  

],1,0[)),(,()( ∈=′′′ ttutftu    ,0)1()()0( ==′′=′ uuu η
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where ).1,22[)),,0[]1,0([ −∈+∞×∈ ηCf     

In 2015, Zhou and Zhang [10] by using Leggett-Williams fixed point theorem and 

Holder inequality, the existence of three positive solutions for the fourth-order impulsive 

differential equations with integral boundary conditions                   

,,10)),(,()()()4(
kttttxtftwtu ≠<<=                      

   ,0)1(,)()()0(
1

0
=′=  xdssxsgx

.0)1(,)()()0(
1

0
=′′′′′=′′  xdssxshx  

Here ]1,0[pLw∈   for some ,1 +∞≤≤ p   ),,2,1( mktk ⋯=   (where m   is fixed 

positive integer) are fixed points with 2100 ttt <<=   11 =<<< +kk tt⋯  , 
kttx =∆  

denotes the jump of )(tx  at .ktt =  

However, it is worth noticing there are few results about the generalization of the 

Leggett-Williams fixed point theorem, even higher-order problem. In 2015, Abdulkadir 

Dogan [11] using the generalization of the Leggett-Williams fixed point theorem studied 

the following boundary value problem: 

],1,0[,0))(,()( ∈=+′′ ttutftu  

,0)1(,0)0( ==′ uu  

where ),0[: ∞→Rf   is continuous. A solution ]1,0[2Cu ∈   is both nonnegative and 

concave on [0,1]. More relevant results, see [12-15]. 

So in this paper, we discuss the existence of at least three positive solutions to the 

following boundary value problem: 

],1,0[)),(()()4( ∈= ttuftu                              (1.1) 

,0)1()0()1()0( =′=′== uuuu                           (1.2) 

where ),0[: ∞→Rf is continuous. A solution u of (1.1)-(1.2) is both nonnegative and 

,,,2,1,0)),(,( mkxtxtIx
kk ttkkktt ⋯==′∆=∆ ==
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concave on [0,1]. We impose growth conditions on f  which allows us to apply the 

generalization of the Leggett-Williams fixed point theorem in finding three symmetric 

positive solutions of (1.1)-(1.2). 

 

2. Preliminaries 
In this section, we give some background material concerning cone theory in a Banach  

space, and we give the generalization of the Leggett-Williams fixed-point theorem. 

 
Definition 2.1. Let E   be a real Banach space. A nonempty closed convex set P   is 

called a cone of E   if it satisfies the following conditions 

(1) 0, ≥∈ λPx  imply Px ∈λ ; 

(2) PxPx ∈−∈ ,  imply 0=x .        

Every cone EP ⊂   induces an ordering in E   given by yx ≤   if and only if 

Pxy ∈− .     

Definition 2.2. A map α  is said to be a nonnegative continuous concave functional on a 

cone P  in a real Banach space E  if ),0[: ∞→Pα  is continuous, and 

),()1()())1(( ytxtyttx ααα −+≥−+  

for all Pyx ∈,   and 10 ≤≤ t  . Similarly, we say the map β   is a nonnegative 

continuous convex functional on a cone P   in a real Banach space E   if  

),0[: ∞→Pβ  is continuous, and              

),()1()())1(( ytxtyttx βββ −+≤−+  

for all Pyx ∈,  and 10 ≤≤ t .      

Let θβγ ，，   be nonnegative continuous convex functional on ,P   and ψα，  

be nonnegative continuous concave functional onP . Then for nonnegative real numbers 

dbah ,,,  and c , we define the following convex sets:                                
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{ },)(:),( cuPucP <∈= γγ                

  { },)(),(:),,,( cuuaPucaP ≤≤∈= γααγ                     

{ },)(,)(:),,,( cuduPucdQ ≤≤∈= γββγ      

{ },)(,)(),(:),,,,,( cubuuaPucbaP ≤≤≤∈= γθααθγ

{ }.)(,)(),(:),,,,,( cuduuhPucdhQ ≤≤≤∈= γβψψβγ  

We consider the boundary value problem 

],1,0[),()()4( ∈= tthtu                               (2.1) 

,0)1()0()1()0( =′=′== uuuu                          (2.2) 

Lemma 2.3. The boundary value problem (2.1)-(2.2) has a unique solution 

=
1

0
)(),()( dsshstGtu  

and let its Green's function ( )stG ,  is 





≤≤≤−+−−
≤≤≤−+−−

=
.10],)1(2)[()1(

,10],)1(2)[()1(

6

1
),(

22

22

tstsstts

ststtsst
stG

  

 

The following is a generalization of the Leggett-Williams fixed-point theorem which 

will play an important role in the proof of our main results. 

 
Theorem 2.4. ([12]) Let P  be a cone in a real Banach space E . Suppose there exist 

positive numbers c   and M  , nonnegative continuous concave functional α   and ψ  

on P  , and nonnegative continuous convex functional βγ ,   and θ   on P   with 

)(),()( uMuuu γβα ≤≤ , for all ),( cPu γ∈ . Suppose that ),(),(: cPcPF γγ →  is 

a completely continuous operator and that there exist nonnegative numbers badh ,,,  

with ad <<0 , such that 

   (B1) { } φααθγ ≠>∈ aucbaPu )(:),,,,,(  and aFu >)(α   
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           for ),,,,,( cbaPu αθγ∈ ; 

   (B2) { } φβψβγ ≠<∈ ducdhQu )(:),,,,,(  and dFu <)(β   

           for ),,,,,( cdhQu ψβγ∈ ;  

   (B3) aFu >)(α  for ),,,( caPu αγ∈  with bFu >)(θ ; 

   (B4) dFu <)(β  for ),,,( cdQu βγ∈  with hFu <)(ψ . 

Then F  has at least three fixed points ),(,, 321 cPuuu γ∈   such that 

)(,)( 21 uadu αβ <<  and ),( 3ud β<  with .)( 3 au <α  

3. Main results 

In this section, we give the growth conditions on f   which allow us to apply the 

generalization of the Leggett-William fixed-point theorem in establishing the existence of 

at least three positive solutions of (1.1)-(1.2). We will make use of various properties of 

Green’s function ),( stG  which include 

,10,
24

)61()1(
),(

3221

0
≤≤−−= t

ttt
dsstG
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2
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 Let ]1,0[CE =   be endowed 
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with the maximum norm, )(max
]1,0[

tuu
t∈

=  . Then for ,
2

1
0 3 ≤< t   we define the cone

EP ⊂  by 

.

 min

, [0,1]on  valued,enonnegativ

 symmetric, concave, is :

333 2tu(t)],t-,1[tt 















 ∈
=

≥∈
u

uEu

P
   

We define the nonnegative, continuous concave functional ψα ,   and nonnegative 

continuous convex functional γθβ ,,  on the cone P  by 

),()(min)( 1
]1,1[],[ 1221

tutuu
ttttt

==
−−∈ ∪

α
 

),
2

1
()(min)(

]
1

,
1

[

utuu
r

r

r
t

==
−∈

β
 

),()(min)( 3
]1,1[],0[ 33

tutuu
ttt

==
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γ
 

),()(min)( 2
]1,1[],[ 1221

tutuu
ttttt

==
−−∈ ∪

θ
 

),
1

()(min)(
]

1
,

1
[ r

utuu
r

r

r
t

==
−∈

ψ
 

where 21,tt  and r  are nonnegative numbers such that 

2

1
0 21 ≤≤< tt and 2

1
t

r
≤ .

 

We see that,  for all ,Pu ∈     

),()
2

1
()()( 1 uutuu βα =≤=                              (3.1) 

),(
2

1
)(

2

1
)

2

1
(

3
3

3

u
t

tu
t

uu γ=≤=                           (3.2) 

and also that Pu ∈  is d solution of (1.1)-(1.2) if and only if 

.]1,0[,))((),()(
1

0 ∈= tdssufstGtu
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We now present our result of the paper: 

Theorem 3.1. Assume that there exist nonnegative numbers cba ,,  such that 

,0
3
2

3
1

t

ct
ba <<<

 
and suppose that f  satisfies the following growth conditions:  

(C1) ),
)61()1(

)1(
(

16245

384
)( 3

3
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3
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3
24

4

ttt
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r
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3
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wf

−+−+−
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3

1

3
2

t

bt
wb ≤≤ ; 

  (C3) ,
)61()1(

24
)(

322 ttt

c
wf

−−
≤

 
for .

2
0

3t

c
w ≤≤  

Then the boundary value problem (1.1)-(1.2) has three symmetric positive solutions 

321 ,, uuu  satisfying 

,)(max
]1,1[],0[ 33

ctui
ttt

≤
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for ,3,2,1=i  
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Proof: Let us define the completely continuous operator F  by 

=
1

0
.))((),())(( dssufstGtFu  

We will seek fixed points of F  in the cone. We note that, if ,Pu ∈  then from properties 

of ),,( stG  0)( ≥tFu  and 
2

1
0),1()( ≤≤−= ttFutFu , and 

 ).
2

1
(2)(,10,0)()( 33 FuttFuttFu ≥≤≤≤′′

 

This implies that ,PFu ∈  and so .: PPF →  Now, for all ,Pu ∈  from (5), we get 
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8
22

aw
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)()( uu βα ≤  and from (6), ).(
2

1

3

u
t

u γ≤
 

If ,),( cPu γ∈  then 
33 2

)(
2

1

t
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t
u ≤≤ γ

 
and from (C3) we get, 

)(Fuγ −∈
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1

0]1,1[],0[
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Thus, .),(),(: cPcPF γγ →  It is immediate that  
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We will show the remaining conditions of Theorem 2.4.: 
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(2) If ),,,
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Since all the conditions of the generalized Leggett-Williams fixed point theorem are 

satisfied, (1.1)-(1.2) has three positive solutions ∈321 ,, uuu   ),( cP γ  , such that 

,)( 1 du <β )( 2uαα <  and ),( 3ud β<  with .)( 3 au <α  

4. Concluding remarks 
In this paper, we have chosen to perform the analysis when f  is autonomous. However, if 

f = f(t, y) and in addition, for each fixed y, f(t, y) is symmetric about t = 1/2, then an 

analogous theorem would be valid with respect to the same cone P. 
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