Annals of Pure and Applied Mathematics

Vol. 21, No. 2, 2020, 125-128

ISSN: 2279-087X (P), 2279-0888(online)

Published on 22 May 2020 www.researchmathsci.org

DOI: http://dx.doi.org/10.22457/apam.v21n2a7669

Annals of
Pure and Applied
Mathematics

All the Solutions of the Diophantine Equation $p^x + p^y = z^4$ when $p \ge 2$ is Prime and x, y, z are Positive Integers

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: anb17@netvision.net.il

Received 3 May 2020; accepted 20 May 2020

Abstract. In this paper we consider the equation $p^x + p^y = z^4$ when x, y, z are positive integers, and establish the following results. (i) For p = 2 with equal values x, y the equation has infinitely many solutions, whereas when x, y are distinct values no solutions exist. (ii) For all primes p > 2, the equation has no solutions.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds.

In this paper, we consider the equation $p^x + p^y = z^4$ when $p \ge 2$ is prime and x, y, z are positive integers. When p = 2 with equal values x, y, it is shown that the equation has infinitely many solutions. Whereas, when p = 2 and x, y are distinct values, the equation has no solutions. Furthermore, for all primes p > 2 it is established that the equation has no solutions. This is done in the following two self-contained theorems.

2. All the solutions of $p^x + p^y = z^4$ when $p \ge 2$ is prime

When x, y, z are positive integers, we shall consider for the equation $p^x + p^y = z^4$ two cases, namely p = 2 and $p \ge 3$. The results will be demonstrated in the following Theorem 2.1 and Theorem 2.2.

Theorem 2.1. Suppose that p = 2.

(a) When x = y, then the equation $2^x + 2^y = z^4$ has infinitely many solutions.

Nechemia Burshtein

(b) When x, y are distinct, then the equation $2^x + 2^y = z^4$ has no solutions.

Proof: (a) Let x = y. The equation

$$2^x + 2^y = 2 \cdot 2^x = z^4 \tag{1}$$

clearly has solutions only if x = 4n + 3 where $n \ge 0$ is an integer. Equation (1) then results in

$$2^{4n+3} + 2^{4n+3} = 2 \cdot 2^{4n+3} = 2^{4n+4} = (2^{n+1})^4 = z^4$$

an identity valid for each and every value $n \ge 0$. For all values n, the solutions of equation (1) are given by

$$(p, x, y, z) = (2, 4n + 3, 4n + 3, 2^{n+1}).$$
 (2)

Thus, when x = y, the equation $2^x + 2^y = z^4$ has infinitely many solutions as asserted.

The proof of (a) is complete.

(b) Suppose that x, y are distinct. Without loss of generality let x < y. We shall assume that $2^x + 2^y = z^4$ has a solution and reach a contradiction. We have the equation

$$2^{x} + 2^{y} = 2^{x}(2^{y-x} + 1) = z^{4}.$$
 (3)

If x is odd in (3), then (3) is clearly impossible. Hence, by our assumption x must be even, and the only possibility is x = 4n where $n \ge 1$ is an integer. Then $2^x = 2^{4n} = 1$ $(2^n)^4$, and by our assumption $2^{y-x} + 1$ must therefore equal K^4 where K is an odd integer. We have $2^{y-x} + 1 = K^4$ or

$$2^{y-x} = K^4 - 1 = K^4 - 1^4 = (K^2 - 1^2)(K^2 + 1^2) = (K - 1)(K + 1)(K^2 + 1^2).$$
 (4)

In (4), the value K = 1 is impossible. Thus $K \ge 3$. If (4) is satisfied for some value K, then the three even factors (K-1), (K+1) and (K^2+1) must simultaneously be equal to three distinct powers of 2. The factors (K-1) and (K+1) differ by 2 which is the smallest possible difference for two distinct powers of 2. The difference 2 is achieved only when $K-1=2^1$ and $K+1=2^2$. Thus K=3 is uniquely determined. But, when K=3, the factor $K^2+1=10$ is a multiple of 5 and (4) is impossible. This implies that the even factors (K-1), (K+1) and (K^2+1) are never powers of 2 simultaneously. Hence, for all odd values $K \ge 3$, it follows that 2^{y-x} $+1 \neq K^4$, a contradiction. Our assumption is therefore false, and when x, y are distinct integers the equation $2^x + 2^y = z^4$ has no solutions.

This concludes part (b) and the proof of Theorem 2.1.

Theorem 2.2. Suppose that $p \ge 3$ is prime.

- (c) When x = y, the equation $p^x + p^y = z^4$ has no solutions. (d) When x, y are distinct, the equation $p^x + p^y = z^4$ has no solutions.

Proof: We shall assume that $p^x + p^y$ has a solution and reach a contradiction.

(c) Let x = y. Then we have the equation

$$p^{x} + p^{y} = 2 \cdot p^{x} = z^{4}. {5}$$

Since p is odd, equation (5) is impossible. Thus $x \neq y$.

All the Solutions of the Diophantine Equation $p^x + p^y = z^4$ when $p \ge 2$ is Prime and x, y, z are Positive Integers

(d) Suppose that x, y are distinct. Without loss of generality let x < y. We obtain

$$p^{x} + p^{y} = p^{x}(p^{y-x} + 1) = z^{4}.$$
 (6)

In (6), one can clearly see that x cannot assume any odd value. Therefore, by our assumption x is even. The only possibility then is x = 4m where $m \ge 1$ is an integer.

Thus $p^x = p^{4m} = (p^m)^4$, and by our assumption $p^{y^{-x}} + 1$ is equal to M^4 where M is an even integer. We have $p^{y^{-x}} + 1 = M^4$ or

$$p^{y-x} = M^4 - 1 = M^4 - 1^4 = (M^2 - 1^2)(M^2 + 1^2) = (M - 1)(M + 1)(M^2 + 1^2).$$
 (7)

Let $p \ge 3$ be any fixed prime. If M = 2, then for all primes $p \ge 3$ in (7), $p^{y-x} \ne 1 \cdot 3 \cdot 5$. Hence $M \ne 2$, and $M \ge 4$. The three odd factors (M-1), (M+1) and (M^2+1) in (7) must simultaneously be equal to three distinct powers of p if (7) is satisfied. The factors (M-1) and (M+1) differ by 2. Hence, when $p \mid (M-1)$, then $p \nmid (M+1)$ since $p \ge 3$. The impossibility of (7) then follows, and the contradiction is derived. Therefore, for all even values M, $p^{y-x} + 1 \ne M^4$. When x, y are distinct, then $p^x + p^y \ne z^4$ and our assumption is false.

This concludes part (d) and the proof of Theorem 2.2.

3. Conclusion

When p = 2, we have established for the equation $p^x + p^y = z^4$ the identity $2^{4n+3} + 2^{4n+3} = (2^{n+1})^4$ valid for each and every value $n \ge 0$. Thus, the equation has infinitely many solutions all of which are presented in (2), and each such solution is unique. For all primes p > 2 the equation has no solutions.

In [1], we have considered the equation $p^x + p^y = z^2$ in which the current power z^4 is equal to the power z^2 . We have established for p = 3 the infinite set of solutions

$$(p, x, y, z) = (3, 2t + 1, 2t, 2 \cdot 3^t)$$
 for all integers $t \ge 1$.

For all primes p > 3, it has been shown that the equation has no solutions.

Moreover, for p = 2 with x = y and with x > y, two infinite sets of solutions have been achieved, namely:

$$(2, x, y, z) = (2, 2t + 1, 2t + 1, 2^{t+1})$$
 for all integers $t \ge 1$, $(2, x, y, z) = (2, 2t + 3, 2t, 3 \cdot 2^t)$ for all integers $t \ge 1$.

For all other values x, y, z, it has been shown that the equation has no solutions.

Evidently, when no conditions are imposed on z such as z is also a square, then more solutions to the equation $p^x + p^y = z^2$ are achieved.

Nechemia Burshtein

We remark that to the best of our knowledge, other authors have not considered equations of the form $p^x + q^y = z^4$. It is therefore obvious, that there are no references on such an equation.

REFERENCES

- 1. N. Burshtein, All the solutions of the diophantine equations $p^x + p^y = z^2$ and $p^x p^y = z^2$ when $p \ge 2$ is prime, *Annals of Pure and Applied Mathematics*, 19 (2) (2019) 111-119.
- 2. N. Burshtein, The diophantine equation $x^4 + y^2 = z^4$ is insolvable in positive integers when at least one of x, y is prime, *Annals of Pure and Applied Mathematics*, 18 (2) (2018) 181-184.
- 3. N. Burshtein, On solutions to the diophantine equation $p^2 + q^2 = z^4$, Annals of Pure and Applied Mathematics, 18 (2) (2018) 135-138.
- 4. N. Burshtein, The class of diophantine equations $p^4 + q^y = z^4$ when y = 1, 2, 3 is insolvable for all primes p and q, Annals of Pure and Applied Mathematics, 17 (2) (2018) 193-195.
- 5. N. Burshtein, A note on the diophantine equation $p^3 + q^2 = z^4$ when p is prime, Annals of Pure and Applied Mathematics, 14 (3) (2017) 509-511.
- 6. N. Burshtein, On solutions to the diophantine equation $p^x + q^y = z^4$, Annals of Pure and Applied Mathematics, 14 (1) (2017) 63-68.
- 7. S. Chotchaisthit, On the diophantine equation $4^x + p^y = z^2$ where p is a prime number, *Amer. J. Math. Sci.*, 1 (1) (2012) 191-193.
- 8. B. Poonen, Some diophantine equations of the form $x^n + y^n = z^m$, Acta Arith., 86 (1998) 193-205.
- 9. B. Sroysang, More on the diophantine equation $8^x + 19^y = z^2$, Int. J. Pure Appl. Math., 81 (4) (2012) 601-604.
- 10. A. Suvarnamani, Solution of the diophantine equation $p^x + q^y = z^2$, Int. J. Pure Appl. Math., 94 (4) (2014) 457-460.