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Abstract.   In this paper we consider the equation px  +  py   =  z4  when x,  y,  z are positive 
integers, and  establish the following results. (i)  For  p = 2  with  equal values  x, y  the  
equation  has  infinitely many solutions, whereas when  x, y  are distinct values no 
solutions exist. (ii)  For all primes  p  > 2,  the equation has no solutions. 
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to 
decide whether a given Diophantine equation has any solutions, or how many solutions.  
In most cases, we are reduced to study individual equations, rather than classes of 
equations. 
 
       The famous general equation 

px  + qy  =  z2 
has many forms.  The literature contains a very large number of articles on non-linear 
such individual equations involving particular primes and powers of all kinds.  
 

In this paper,  we consider the equation  px  +  py  =  z4  when  p  ≥  2  is prime and 
x,  y,  z   are positive  integers.  When p = 2  with equal values x,  y,  it is shown that the 
equation has infinitely many solutions.  Whereas, when  p = 2  and x,  y  are distinct 
values, the equation has no solutions.  Furthermore, for all primes p > 2 it is established 
that the equation has no solutions.  This is done in the following two self-contained 
theorems. 
 
2.   All the solutions of   px +  py  = z4  when  p  ≥  2  is prime 
When x, y, z  are positive integers, we shall consider for the equation  px  + py   =  z4   two 
cases, namely  p = 2  and   p  ≥ 3. The results will be demonstrated in the following 
Theorem  2.1  and Theorem  2.2. 
 
Theorem  2.1.   Suppose that  p  =  2. 
(a)  When  x  =  y,  then the equation  2x  +  2y  =  z4  has infinitely many solutions. 
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(b)  When  x,  y  are distinct,  then the equation  2x  +  2y  =  z4  has no solutions. 
 
Proof: (a)   Let  x =  y.  The equation   

2x  +  2y  =  2	∙	2x =  z4                                                                  (1) 
clearly has solutions only if  x = 4n + 3  where  n ≥ 0  is an integer. Equation  (1) then 
results in 

24n + 3 + 24n + 3=  2	∙	24n + 3  =  24n + 4  =  (2n + 1)4  =  z4 
an identity valid for each and every value  n ≥ 0. For  all values n,  the solutions of 
equation  (1) are given by 

(p, x, y,  z)  =  (2, 4n + 3, 4n + 3, 2n + 1).                                  (2) 

Thus, when  x  =  y,  the equation  2x  +  2y  =  z4  has infinitely many solutions as asserted. 
 
     The proof of  (a)  is complete. 
 
(b)  Suppose that  x,  y  are distinct.  Without loss of generality let  x <  y.  We shall 
assume that  2x  + 2y  =  z4  has a solution and reach a contradiction.  We have the equation 

                                                 2x  + 2y  = 2x (2y–x  +  1)  =  z4.                                            (3) 

If  x  is odd in  (3),  then  (3)  is clearly impossible.  Hence,  by our assumption  x  must 
be even, and the only possibility is  x = 4n  where  n  ≥ 1 is an integer.  Then   2x  = 24n = 
(2n)4,  and by our assumption  2y–x + 1 must therefore equal  K4  where  K  is an odd 
integer.  We have  2y–x  + 1 =  K4  or 

   2y – x =  K4 – 1 = K4  – 14  =  (K2  –  12)(K2  +  12)  =  (K  – 1)(K + 1)(K2  +  12).          (4) 

In  (4),  the value  K  =  1  is impossible.  Thus  K ≥ 3.  If  (4)  is satisfied for some value  
K,  then the three even factors  (K – 1),  (K + 1)  and  (K2  +  1)  must simultaneously be 
equal to three distinct powers of  2.  The factors  (K  –  1)  and  (K  +  1)  differ by 2 
which is the smallest possible difference for two distinct powers of  2.  The difference 2  
is achieved only when  K  – 1 =  21  and  K  + 1  =  22.  Thus  K  = 3  is uniquely 
determined.  But, when  K  =  3,  the factor  K2 + 1 = 10  is a multiple of  5  and  (4)  is 
impossible.  This implies that the even factors  (K  –  1),  (K  +  1)  and  (K2   + 1)  are 
never powers of  2  simultaneously.  Hence, for all odd values  K ≥ 3,  it follows that  2y – x 
+ 1 ≠  K4, a contradiction.  Our assumption is  therefore  false,  and when   x,  y   are  
distinct  integers  the  equation  2x  + 2y  =  z4  has  no solutions. 
 
       This concludes part  (b)  and the proof of Theorem  2.1.                         □ 
 
Theorem  2.2.   Suppose that  p  ≥  3  is prime. 
(c)  When  x = y,  the equation   px  +  py  =  z4  has no solutions. 
(d)  When  x,  y  are distinct,  the equation  px  +  py   =  z4  has no solutions. 
 
Proof:  We shall assume that  px  + py  has a solution and reach a contradiction. 
(c)  Let  x  =  y. Then we have the equation 

px  +  py  = 2	∙	px  =  z4.                                                       (5) 

Since  p  is odd,  equation  (5)  is impossible.  Thus   x  ≠  y.   
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(d)   Suppose that  x,  y  are distinct.  Without loss of generality let  x  <  y.  We obtain  

px  +  py   = px (p y – x  + 1)   =  z4.                                              (6) 

In  (6), one can clearly see that  x  cannot assume any odd value. Therefore, by our 
assumption  x  is even.  The only possibility then is  x = 4m  where  m  ≥  1  is an integer.  
 

Thus   px   =  p4m  =  (pm)4,  and by our assumption  py  –  x  +  1 is equal to  M4  

where  M  is an even integer. We have py – x  + 1 =  M4  or 

py – x  =  M4 – 1 = M4 – 14  =  (M2  –  12)(M2  +  12)  =  (M  – 1)(M  +  1)(M2  +  12).    (7) 

Let  p  ≥  3  be any fixed prime.  If  M  =  2,  then for all primes p  ≥  3  in  (7),   py – x  
≠  

1∙	3 ∙	5. Hence  M  ≠ 2, and M  ≥  4.  The three odd factors (M  – 1), (M  + 1) and (M2 + 1) 
in  (7)  must simultaneously be equal to three distinct powers of  p  if  (7)  is satisfied.  
The factors  (M  – 1)  and  (M + 1)  differ by  2.  Hence, when  p | (M – 1), then  p ∤	(M + 
1) since   p  ≥  3. The impossibility of  (7)  then follows,  and the contradiction is derived.  
Therefore, for all even values  M,  py – x  + 1 ≠ M4.  When  x, y  are distinct, then  px + py  

≠ 
z4  and our assumption is false.   
 
       This concludes part  (d)  and the proof of Theorem  2.2.                                □ 
 
3.   Conclusion 
When  p  =  2, we have established for the equation  px  +  py  =  z4  the identity  24n + 3  + 
24n + 3  =  (2n + 1)4  valid for each and every value n ≥  0.  Thus, the equation has infinitely 
many solutions all of which are presented in  (2),  and each such solution is unique.  For 
all primes  p  > 2  the equation has no solutions.   
 

In  [1],  we have considered the equation  px  +  py  =  z2  in which the current 
power  z4  is equal to the power  z2.  We have established for  p = 3  the infinite set of 
solutions 

                        (p,  x,  y,  z)  =  (3,  2t + 1,  2t,  2	∙	3t)                        for all integers  t  ≥  1. 

For all primes  p > 3,  it has been shown that the equation has no solutions.  
 
       Moreover, for  p = 2  with x  =  y  and with  x > y,  two infinite sets of solutions have 
been achieved, namely: 

                        (2,  x,  y,  z) = (2,  2t + 1,  2t + 1,  2t + 1)                    for all integers  t  ≥  1, 
                        (2,  x, y, z) = (2,  2t + 3,  2t,  3	∙	2t)                            for all integers  t  ≥  1. 

For all other values   x,  y,  z,  it has been shown that the equation has no solutions. 
 
       Evidently, when no conditions are imposed on  z such as  z  is also a square, then 
more solutions to the equation  px  +  py  =  z2 are achieved. 
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       We remark that to the best of our knowledge, other authors have not considered 
equations of the form  px  +  qy   =  z4.  It is therefore obvious, that there are no references 
on such an equation. 
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