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Abstract. The interplay between groups and graphs have Heenmbst famous and
productive area of algebraic graph theory. In gaper, we define new graphs namely
stabilizer graph, orbit graph, non-stabilizer graphd non-orbit graph for each
permutation group G. Our aim is to translate prige of graphs into algebraic
properties and then using the results and methbddgebra to declare theorem about
graphs. We investigate the interconnection betwbergroup theoretic properties of G
and the graph theoretic properties of the above gephs. Some of the graphs are
illustrated with example. Finally we obtain sonmepbrtant results including theorem
and discuss the relationship between group isonsrpand graph isomorphism.
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1. Introduction

Graph theory is one of the foremost probing fieldniathematics principally because of
its applications in various fields which include diiemistry, electrical engineering,
computer science and operations research. Thekawigs of mathematics are playing a
prominent role in modern mathematics.

Groups are the focal mathematical equipment fodyég symmetries of an
object and symmetries are usually associated whgratomorphisms. Several structures
in abstract algebra are special cases of groupsggrdup theory we study and examine
different groups and their structures while in gragoithh we concentrate on the graphs
that indicates the structure of materials and abjedhe forceful combinatorial methods
found in graph theory have also been utilized tmatestrate significant and well-known
results in a variety of areas in mathematics cosimmiigroup theory.

All finite groups can be delineated as the autorismligroup of a connected
graph [1]. Relating a graph to a group providemethod of visualizing a group and
connects two important branches of mathematicsgiviés a review of cyclic groups,
dihedral groups, direct products, generators alatdioas [2]. In the past few decades the
researchers have concentrated on the modified fdrgraups and graphs by inter
relating their properties. The literature of algeb graph theory itself has grown
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enormously since 1974 [3]. The study of the algi&bstructures utilizing the properties
of graphs has become a rousing research topicenlast twenty years, foremost to
several interesting results and questions.

The concept of zero-divisor graph was first intrastuidy Beck in [4] while
discussing the coloring of a commutative ring. is \Wwork all elements of the ring were
considered as vertices of the graph. AndersonNaser used this same concept in [5]
and Mahadevi and Babujee also done their work atiap structures of zero-divisor
graphs [6]. Muneshwar and Bondar gave an introdoaid overview of some nice ideas
from group theory by using graph theory [7]. Chpalhi and Kiran Kumar explained the
concept of order divisor graph of finite groups. [8ameron and Ghosh done their work
on power graph of a finite group [9]. Omer, Sarraid Erfanian introduced orbit graph
for some finite solvable groups [10]. ShigehaliddJppin discussed some properties of
glue graph [11]. Varkey and Rajan studied on thecspm and energy of concatenated
singular graphs [12]. Revankar et al. [13] expldioa eccentricity sum eigenvalue and
eccentricity sum energy of a graph. In this paper,construct a stabilizer graph and
orbit graph for finite groups.

In section 2, we discuss stabilizer graph and nabiger graph. Orbit graph
and non-orbit graph are discussed in section 3.ealch section related theorems and
results are obtained. Also, some of graphs arstilited with suitable examples. Section
4 concludes the paper.

2. Stabilizer graph of finite group

A. Stabilizer graph of G

Definition 2.1. Let G be a group of permutations of a set A. Facxhex in A, let
Stabg(x) = {@UG |@(x) = x}. We callStab;(x) the stabilizer of x in G and is
denoted by, (x). (See [14]).

Definition 2.2. Let A be any finite set and G be a group of pertmta. We define a
stabilizer graph of G, denoted b§s;(4)) is a simple graph (V, E) with vertex set V = {
Se(x) |UxLIA} and edge set E = §;(x), S (1)) | S (x) =S (v) Ux, yLIA}.

Example 2.1. Let A = U(7) = {1, 2, 3, 4, 5, 6}. Let us calcutathe left rectangular
representatio(7) for U(7) = {1, 2, 3, 4, 5, 6}. Writing the permuitans of U(7) in
array form, we haveflis just a multiplication by x),

T,=(1 2 3 4 5 6 _(1 2 3 4 5 6
1 2 3 4 5 6 2 4 6 1 3 5
1 23 456 1 2 3 4 5 6

Ts= ) &= )
36 2 5 1 4 4 1 5 2 6 3
1 2 3 4 5 6

To= ’ 1=(1 2 3 4 5 6
5 3 1 6 4 2 6 5 4 3 2 1

Let G=U(7)={(1), (124)(365),(132645),(142)(Fh(154623),(16)25)3
4)}. Then, we have,
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Stabg (1) =Stabg(2) =Stabg(3) =Stab;(4) =Stabg(5) =Stabs;(6) = {(1)}.Stabilizer
graph of U(7) inJ(7) is shown in Figure 1.

Figure L: r(SgU(7))

Definition 2.3. r(S; (4))is complete if and only i§;(x) =S, (y)for all distinct x, ye A.

Result 2.1. Stabilizer graph of the group(n) is always complete.Because the stabilizer
point of U(n) inU(n) is trivially equal to (1).

Result 2.2. If G is a symmetric grouf,, where n> 3, then the stabilizer graph is always
null graph.

Proof: Let A be any finite set and G be a group of pertimna of a set A. For each x in
A, letStab;(x) = {¢p € G | p(x) = x}. If G is a symmetric grouf,, wheren > 3, we
get different stabilizer of each x in G. i®R.(x) # S;(y) Vx,y € A. Then there does
not exist an edge between every pair of verti€géy) V x € A. Therefore, the stabilizer
graphr(S; (4)) is a null graph.

Result 2.3. For abelian groups, the stabilizer graph is obvipasmplete.

Proof: Let G be an abelian group. i.65, ,n < 2 andU(n). For each x in A, we have
Stabg (x) = {(1)} so thatS;(x) = S;(y) Vx,y € A. Then there exist an edge between
every pair of verticesS;(x) Vx € A. Therefore, the stabilizer graptiS;(4)) is
complete.

Result 24. If G is the set of all even permutations of a syt group, then the
stabilizer graph is complete 8y, where n< 3 and null graph fao$,, where n> 4.

Proof: Let G be the set of all even permutations of a sgirimgroups,,.

Case(i): If G is the set of all even permutations of a syrrioegroupS,,wheren < 3,
then for each x in A, we hawab;(x) = {(1)} so thatS;(x) = S;(y) Vx,y € A. Then
there exist an edge between every pair of vertif§gés) Vx € A. Therefore, the
stabilizer graphr(S; (4)) is complete.

Case(ii): If G is the set of all even permutations of a symroegroups,, where

n = 4, then for each x in A;(x) # S;(y) for allx,y € A. Then there does not exist an
edge between every pair of vertic8s(x) for allx € A. Therefore, the stabilizer graph
r(S¢ (4)) is a null graph.
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Result 25. If G is the set of all odd permutations of a symmeegroup, then the
stabilizer graph is null graph f&f, where n> 3 and empty graph fck,.

Proof: Let G be the set of all odd permutations of a syirimgroups,,.

Case (i): If G is the set of all odd permutations of a synmiwegroups,, wheren >
3,then for each x in AS;(x) + S;(y) Vx,y € A. Then there does not exist an edge
between every pair of vertice®; (x)V x € A. Therefore, the stabilizer grapfs; (4)) is

a null graph.

Case (ii): If G is the set of all odd permutations of a symnmegrous,, wheren = 2,
then for each x in A, stabilizer point does notsexiSo there is no any vertex. Thus we
get an empty graph.

Result 2.6. If G is the set of all even permutations of a groin), then the stabilizer
graph is complete.

Proof: Let G be a group of even permutations of the gid(p). Then, by Result 2.1, for
each x in AStabg;(x) = {(1)} so thatS;(x) = S;(y) Vx,y € A. Then there exist an
edge between every pair of verticg(x) Vx € A. Therefore, the stabilizer graph
r(S¢ (4)) is complete.

Result 2.7. If G is the set of all odd permutations of a grél(), then the stabilizer
graph is empty graph.

Example 2.2. Let A= U(5) ={1, 2, 3, 4, 5}. If we take G as add permutation then G =
U(B)={(1243),(1342).

Result 2.8. If we take G as a random permutations of a symmejroup, then the
stabilizer graph maybe connected or disconnected.

Example2.3. LetA={1,2,3,4,5,6,7,8tand G={(1), (13 (465) (7 8),(132)(46
5),(123)(456), (123)(456) (7 8), (7 8)fhen, we have,

Stabg (1) =Stabg(2) =Stabg(3) =Stab;(4) =Stabg (5) =Stabg;(6) = {(1), (7 8)},
Stabg(7) =Stab;(8) ={(1), (1 32)(4 65), (12 3)(456)}.

Theorem 2.1. Let U(n,) andU,) be two finite groups. If Uf,) L1U(n,), then
r (S—U(nl)U(nl)) Lr (S—U(nz)U(nZ)).
Proof: Assume Uf,) [1U(n,).Then there exist an isomorphic n@@p U(n,)—-U(n,).

Since @ is a group isomorphism that preserves stabilipémtpf every element of a set,

@ maps stabilizer point of W{) to a stabilizer point of Wf). Letx; andy; be the
stabilizer points of U{;) and Ug,) respectively, where i =1, 2, 3...n. Then we se¢ th
@(x;) =y; foralli. Also, ifx; is adjacent ta; , then@(x;) is adjacent tap(x;), for alli

#j. Thus @ is a graph isomorphism. HennéSWU(nl)) =r (SWU(nZ))D
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Example 2.4. Let U(8) = {1, 3, 5, 7} and G B(8) = {(1), (1 3)(5 7), (1L 5)(3 7), (1 7)(3
5)}. Then, we havétab;(1) =Stab;(3) =Stabg;(5) =Stabg(7) = {(1)}. Similarly, let
U(12) ={1, 5, 7, 11} and G &(12) = {(1), (1 5)(7 11), (1 7)(5 11), (1 11)(5 7)}. €h,
we have,

Stabg (1) =Stabg(5) =Stabg(7) =Stabg(11) = {(1)}. Stabilizer graph of U(8) itV (8)
and Stabilizer graph of U(12) 1i(12) is shown in Figure 2.

Figure 2: Graph isomorphism betwee(Sg5;(U(8))) andr(Sgrzy(U(12))).

Coroallary 2.1. The converse of the above theorem is not true.
Proof: Consider the finite groups U(8) and U(10). Let)X8(1, 3, 5, 7} and G #/(8)
={1), A3)(57), (15(@7), (1 7)(35)}and Let(10) ={1, 3, 7, 9} and G #(10)
={(1),(1397),(1793),(19(3 7}

Then stabilizer point of U(8) iti(8) and stabilizer point of U(10) iti(10) are
Stab; (1) = Stabg (3) = Stab; (5) = Stab; (7) = {(1)} and Stab; (1) = Stab; (3) =
Stabg(7) =Stab;(9) = {(1)} respectively.

Herer(Sgey(U(8))) andr(Sy4y(U(10))) are isomorphic, but U(8) and U(10)
are not isomorphic. Stabilizer graph of U(8)Ui8) and Stabilizer graph of U(10) in
U(10) is shown in Figure 3.

Se(1) S6(3)

S6(5) Se(7)

Figure 3: Graph isomorphism between(Sgy(U(8))) and r(Sggy(U(10))).

B. Non-stabilizer graph of G

Definition 2.4. Let A be any finite set and G be a group of pertmta. We define a
non-stabilizer graph of G, denoted (S (4)) is a simple graph (V, E) with vertex set
V ={S;(x) |OxA} and edge set E = {§;(x), S (»)) | S (x) # S (v) Ox, yLIA}L

Note: Null graph and disconnected graph can be convénteda connected graph by
using the non-stabilizer graph definition.
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Result 2.9. If G is a symmetric grou§, where n> 3, then the non-stabilizer graph is
always complete.

Proof: Let G be a symmetric groufy wheren = 3. Then, for each x in A;(x) #
S:(y) V x,y € A. By the definition of non-stabilizer graph, therdst an edge between
every pair of verticeS;(x) Vx € A. Therefore, the non-stabilizer gragh(S; (4)) is
complete.

Result 2.10. Non-stabilizer graph need not be complete.

Note: Disconnected graph becomes connected when usingtabitizer graph definition
but this need not be complete.

4. Orbit graph of finite group
A. Orbit graph of G
Definition 3.1. Let G be a group of permutations of a set A. Fahex in A, 1eOrbg;(x)

={@(x) | @LUG}. Then the sebOrb;(x) is a subset of A called the orbit of x under G

and is denoted b§;(x). We use Prb;(x) | to denote the number of elements in
Orb;(x). (See [14]).

Definition 3.2. Let A be any finite set and G be a group of pertmta. We define a
orbit graph of G, denoted Y0 (A4)) is a simple graph (V, E) with vertex set V = {
0 (x) | UxJA} and edge set E = {{;(x), 05;(¥)) | 05 (x) = 0,(y) Ux, yLIA}

Example 3.1. Let A = {1, 2, 3} and G $;3= {(1), (1 2 3), (1 3 2), (2 3), (1 3), (1 2)}.
ThenPrb; (1) =0rb;(2) =0rb;(3) = {1, 2, 3}. The Orbit graph of A undég is shown
in Figure 4.

Figure 4: r(Og, (A))
Definition 3.3. 1(0; (A)) is complete if and only i©;(x) = 0;(y) for all distinct x, Yy 1A.

Result 3.1. If G is a symmetric group, then the orbit graphlisays complete.

Proof: Let A be any finite set an@ be a group of permutations of a set A. For each x
in A, letOrbg(x) ={¢p(x) | ¢ € G}. If G is a symmetric group, then for each x inva
getOg(x) ={1, 2, 3, ... ,;n} so thab;(x) = 0;(y) V x,y € A. Then there exist an edge
between every pair of vertic€g,(x) Vv x € A. Therefore, the Orbit grapi{0;(4)) is
complete.
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Result 3.2. Orbit graph of the group/(n) is always complete.

Proof: Let G be the group'(n). Then for each x in A, we gé(x) = {1, 2, 3, ... ,n} so
thatO;(x) = 04;(y) V x,y € A. Then there exist an edge between every paiertices,
0;(x) V x € A. Therefore, the Orbit grapiiO, (A)) is complete.

Result 3.3. If G is the set of all even permutations of a syrrioeyroup, then the orbit
graph is always complete, except

Proof: Let G be the set of all even permutations of a sgirimgroups,,.

Case (i): If G is the set of all even permutations of a synriogroups,, where n # 2,
then for each x in A, we gé&;(x) ={1, 2, 3, ... ,n} so thab;(x) = 0;(y), Vx,y € A.
Then there exist an edge between every pair ofcest;(x) V x € A. Therefore, the
Orbit graphr(0;(A)) is complete.

Case (ii): If G is the set of all even permutations of a syrmineyroups,, where n = 2,
then for each x in A, we get different orbit poirgs thaO.;(x) = 0;(y) V x,y € A.
Then there does not exist an edge between the gbamertices,0;(x) and 0. (y).
Therefore, the Orbit grapt{O (4)) is a null graph.

Result 3.4. If G is the set of all odd permutations of a symmiaegroup, then the orbit
graph is always complete, except
Proof: Similar to the proof of Result 3.3.

Theorem 3.1. Let U(n,) and Uf,) be two finite groups. If Uf;) L1U(n,), then

r(05ap VM) Or (0gepU ().
Proof: Similar to the proof of Theorem 2.1.

Corollary 3.1. The converse of the above theorem is not true.
Proof: Similar to the proof of Corollary 2.1.

B. Non-orbit graph of G
Definition 3.4. Let A be any finite set and G be a group of pertmta. We define a

non-orbit graph of G, denoted by (0;(4)) is a simple graph (V, E) with vertex set V =
{0¢(x) |UxLIA} and edge set E = {{;(x), 05()) | 0¢(x) # 0 (y), U x, yLIA}L

Example 3.2. Let A = {1, 2} and G = {(1 2)}. TherOrb;(1) = {2}, Orb;(2) ={1}
andnon-orbit graph of A under G is shown in Figblre

Figure5: ry(0g(A))
4. Conclusion
In this paper, we established the stabilizer grapt orbit graph of finite groups and
some of the related results were dealt with swetallamples. Next, non-stabilizer graph
and non-orbit graph were found and discussed. Westigated the interconnection
between the group theoretic properties of G andgttaph theoretic properties of the
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stabilizer graph, orbit graph, non-stabilizer grapid non-orbit graph. This proposed
work can be extended to other graph theoretic phiggenith other finite groups.

Acknowledgement. The authors are highly grateful to the anonymavsemvers for their
valuable comments for improvement of the paper.

1.

2.

pw

10.

11.

12.

13.

14.

REFERENCES

R.Frucht, Graphs of degree three with a given absgroup, Canadian Journal of
Mathematics, 1(4) (1949) 365-378.

S.U.Rehman, A.Q.Baig, M.Imran and Z.U.Khan, Ordérisdr graphs of finite
groups, Analele Siintifice ale Universitatii Ovidius Constanta, Seria Matematica,
26(3) (2018) 29-40.

N.Biggs,Algebraic Graph Theory, Cambridge university press, Cambrid893.
I.Beck, Coloring of commutative ringdournal of Algebra, 116(1) (1988) 208-226.
D.D.Anderson and M.Naseer, Beck's coloring of a ourtative ring,Journal of
Algebra, 159(2) (1993) 500-514.

P.Mahadevi and J.Baskar Babujee, On special stegtaf zero-divisor graphs,
International Journal of Pure and Applied Mathematics, 119(13) (2018) 281-287.
R.A.Muneshwar and K.L.Bonder, On graph of a fingmup, IOSR Journal of
Mathematics, 10(5) (2014) 05-09.

T.Chalapathi and RVMSS Kiran Kumar, Order divisaamgh of finite groups,
Malaya Journal of Mathematik, 5(2) (2017) 464-474.

P.J.Cameron and S.Ghosh, The power graph of a finitup Discrete Mathematics,
311(13) (2011) 1220-1222.

S.M.S.Omer, N.H.Sarmin and A.Erfanian, The orbapir for some finite solvable
groups,AlP Conference Proceedings, (2014) 863-869

V.S.Shigehalli and G.V.Uppin, Some properties afegbraph,Annals of Pure and
Applied Mathematics, 6(1) (2014) 98-103.

T.K.Mathew Varkey and John K. Rajan, On the spectamd energy of concatenated
singular graphsinnals of Pure and Applied Mathematics, 14(3) (2017) 555-579
D.S.Revankar, M.M.Patil and H.S.Ramane, On ecasdtytrsum eigenvalue and
eccentricity sum energy of a grapAnnals of Pure and Applied Mathematics, 13(1)
(2017) 125-130.

J.A.Gallian, Contemporary Abstract Algebra, CENGAGE Learning, B8 Edition,
2012.

102



