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Abstract. In this work we have introduced a modified method golving second order
fuzzy differential equations. This method basedranfully fuzzy neural network to find
the numerical solution of the two- point fuzzy bdary value problems for the ordinary
differential equations. The fuzzy trial solution thfe two-point fuzzy boundary value
problems is written based on the concepts of tHby fuzzy feed-forward neural
networks which containing fuzzy adjustable paramsetén comparison with other
numerical methods, the proposed method provideseriopat solutions with high
accuracy.
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1. Introduction

Many methods have been developed so far for solfuzgy differential equations

(FDE9 since it is utilized widely for the purpose of netidg problems in science and
engineering. Most of the practical problems requhre solution of the FDE which

satisfies fuzzy initial conditions or fuzzy boungawonditions, therefore, the FDE must
be solved.Many FDE could not be solved exactlysthansidering their approximate
solutions is becoming more important.

The theory of FDE wadirst formulated by Kaleva and Seikkala. Kalevasw
formulated FDE in terms of theHukuhara derivativdH-derivative. Buckley and
feuring have given a very general formulation ofirat-order fuzzy initial value
problem. They first find the crisp solution, makéuizzy and then check if it satisfies the
FDE.

In 1990 researchers began using artificial nenedvork (ANN) for solving
ordinary differential equation (ODE) and partiaffeliential equation (PDE) such as :
lee, Kang in [1]; Meade, Fernandez in [2,3]; Lagatiikas et alin [4]; Liu, Jammes in
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[5]; Tawfiq in [6]; malek, shekari in [7]; PattakaiMishra in [8]; Baymani, Kerayechian,
et al. in [9]; and other researchers.

In 2010 researchers began using ANN for solvirggyudifferential equation
such as: Effati and pakdaman in [10]; Mosleh, Ofadil1]; Ezadi, Parandin, et al. in
[12].

In 2012 researchers began using partially (nony)fuilizzy artificial neural
network (FANN) for solving fuzzy differential equai such as Mosleh,
Otadi in [13,14,15. In (2016) Suhhiem [16] developed and used p#rtieANN for
solving fuzzy and non-fuzzy differential equatians.

In this work we have used fully feed forward fuzzgural network to find the
numerical solution of the two- point fuzzy boundaalue problems for the ordinary
differential equations. The fuzzy trial solution thle fuzzy boundary value problem is
written as a sum of two parts. The first part $i@gsthe fuzzy boundary condition, it
contains no fuzzy adjustable parameters. The sepandinvolves fully fuzzy feed-
forward neural networks which containing fuzzy atifble parameters.

2. Basic definitions
In this section, the basic notations which are tisddzzy calculus are introduced.

Definition 1. [16] Ther - level (or r - cuf) set of a fuzzy set Aabeled by A\ is the crisp
set of all x in X(universal set) such thax(x) >r; i.e.
A ={xeX:puz(x) =r,re[0,1]}. ()

Definition 2.[16,17] Extension principle
Let X be the Cartesian product of universeg X 5, ..., Xn and AA,, ..., A, be m -
fuzzy subset in X, X 5, ..., Xn respectively, with Cartesian product=AAxA,x ... X
A, and fis a function from X to a universe Yy = f(Xs, X 2, ..., %»)). Then, the
extension principle allows to define a fuzzy sulietf (A) in Y by
B={( Y Hg(Y)) 1y =%, X2 -y %), (X1, X2 -, %n) € X}, where
SUD(y, e et Min{lg (0., by ()}, 171 ()20
Hg (V)= 2
0, otherwise.
and f!is the inverse image off.

For m =1, the extension principle will be :
B=1f(A) = {(y, ug(y)) Ly =f(x), x € X}, where

g1
o) =gt @0 ©
0, otherwise
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which is one of the definitions of a fuzzy functibefinition (4).

Definition 3. [16,17] Fuzzy number

A fuzzy number us completely determined by an ordered pair otﬁmms(g(r),ﬁ(r)),
0 <r < 1, which satisfy the following requirements :

1) u(r) is a bounded left continuous and non decreasingfifon on[0,1].

2)7u(r) is a bounded left continuous and non increasingtfan on[0,1].

3un <um,0<r<1.

The crisp number a is simply represented by :

umn=ur)=a,0<r<1.

The set of all the fuzzy numbers is denotedHEdy

Remark 1. [10] For arbitrary "& (uT), = (v,V) and Ke R, the addition and
multiplication by Kfor allr € [0,1]can be defined as:

1)(u +v)(r) = u(r)+v(r)

2)(u +v)(r) =TUN+v(r)

3)(Kw)(1) = Ku(r), (Ku)(r) = Ku(), if K >0

4)(Ku)(n) = Ku(r), (Ku)(r) = Ku(n), if K < 0.

Remark 2. [18] The distance between two arbitrary fuzzy numbers(u,Ti) and v=
(v,V) is given as:

D(0,9) = [f; (u(n) -w(r)?dr + [ @) ¥())dr|* @)
Remark 3. [18] (E',D) is a complete metric space.

Remark 4. [13] The operations of fuzzy numbei@n parametric formm can be
generalized from that of crisp intervals. Let uséha look at the operations of intervals,
Vay, bi,a, b € R, A=[a, by] and B Ha, b,].

Assuming A and B numbers expressed as intervah) m@rations of intervals are :

1) Addition : A + B =[ay, by] + [ay b,] =[a;+ ay by + by).

2) Subtraction : A - B fay, by] - [a5 bs] = [ai- by, by - ay].

3) Multiplication :

A. B =[min{a; a,, a; b>, byay, by by}, max{a; ay, a; by, baz, by bo}]

4)Division : A/B 9min{a; / a5, & / by, by /a5, by / by}, max{a, / a5, & /by, by /as, by /

b,}] excluding the cass =0 orb, =0.
5) Inverse : A =[a, byt = [min {al, l},max{1 1}]

b, 3_1’ b_1
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excluding the cas® =0 orb; =0.

Definition 4. [16] Fuzzy function
A classical function F: %> Y maps from a fuzzy domain &X into a fuzzy range

Beyvifandonlyifvx eX,pg(F(X) = ua®) .

Remark 5. [10]
(1) The function F R — E! is called a fuzzy function.
(2) We call every function defined in set@E® to BS E' a fuzzy function.

Definition 5. [10] The fuzzy function FR — E! is said to be continuous if :
For an arbitrary;£ R ande > 0 there exists & > 0 such that :

|t-t] < &= D(F (t) F(t)) < €, where D is the distance between two fuzzy numbers.

Definition 6. [16] LetI be a real interval. The-level set of the fuzzy functigr: I - E?
can be denoted by :

[y()]" = [y1(x),y2(x)] xelre[01] (5)
The Seikkala derivative’ (x)of the fuzzy function(x) is defined by :
[y ] = [(y1)' ), 2)’®)] x€eLre[0]1] (6)

Definition 7. [10] letu, v € EX. If there exist we E! such that

u = v+w then w is called the H-difference (Hukuhara-elfnce) ofi, v and it is denoted
by w= u©v.

In this work the© sign stands always for H-difference, and let umsamk that u©v # u
+(-1) v.

Definition 8. [12, 19] Fuzzy derivative

Let F : (a,by> E! and t, € (a,b). We say thatF is H-differential (Hukuhara-
differential) at x,, if there exists an elemer’(x,) € E! such that for all h
0 (sufficiently small), 3 F(xo +h)©F(xg), F(Xo)©F(xo- h) and the limits (in the metric
D)

i P8 HDORGD) _  FEQ) OFG0 =) _ -

ThenF’(x,) is called fuzzy derivative (H-derivative) df atx,, where D is the distance
between two fuzzy numbers.

3. Fully fuzzy neural network [6,16]
Artificial neural networks are learning machineattiban learn any arbitrary functional
mapping between input and output. They are fasthinas and can be implemented in
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parallel, either in software or in hardware. Intfahe computational complexity of ANN
is polynomial in the number of neurons used inrtbavork. Parallelism also brings with
it the advantages of robustness and fault tolerance

That is, ANN is a simplified mathematical modeltbé human brain. It can be
implemented by both electric elements and compadaéiware. It is a parallel distributed
processor with large numbers of connections. &nisnformation processing system that
has certain performance characters in common viglbdical neural networks.
A fuzzy neural network or neuro-fuzzy system igearning machine that finds the
parameters of a fuzzy systefine., fuzzy set, fuzzy rul@sby exploiting approximation
techniques from neural networks. Combining fuzzstems with neural networks. Both
neural networks and fuzzy systems have some tlimgemmon. They can be used for
solving a problemse. g. fuzzy differential equations, fuzzy integral etjoias, etc).
If all the adjustable parameters (weights and kjaaee fuzzy numbers then the fuzzy
neural network is called fully fuzzy neural netwodtherwise it is called partially fuzzy
neural network.

4. Solution of FDEs by fully fuzzy neural network
To solve any fuzzy ordinary differential equatior wonsider a three — layered fully
fuzzy neural network with one unit entry x, oneded layer consisting of m activation
functions and one unit outpit(x). The activation function for the hidden units afro
fully fuzzy neural network is the hyperbolic tangdémnction () = tanh («)). Here,
the dimension of fully fuzzy neural network(is x m x J (Fig. 1).

For every entry x (where X 0) the mathematical operations in the fully fuzzy
neural network can be described as :

Input unit: x = X, (8)
Hidden units:

[2]r = [[Zj]:: [z,-]f] = [S ([neti]:)'s ([netj]f)] 9)
where

[“etj]: :X[Wj]: +[bi]]; J10
[netj]iJ :X[Wj]lrJ ’“[bj]lrJ (11)
Output unit :

INGOTr = [INGOTE, INGOIF] (12)
where

[NGOIF=2}2; min { [Vj]i[zj]?' [Vj]:[zj]lrj' [v,-]f[z,-]?, [VJ'],[:[ZJ']IrJ } (13)
[NGOTY=Xj2, max { [Vi]];[zj]]; : [Vi]:[zi]lrj : [Vi]f[zi]]; : [VJ']I:[ZJ'KJ } (14)
where
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L L L
7], = S(X [wil " + [bj]r) (15)
U U U
7], = S(X [wi] © + [bj]r) (16)
Fully fuzzy neural network with crisp set inputsizZy numbers adjustable

parameters (weights and biases) and fuzzy numlgpsitosolutions to the fuzzy ordinary
differential equations is given in Fig. (1).

Hidden units

Input unit Output unit

>[N

Bias unit

Figurel: (1 x m x 1) Fully fuzzy feed forward neural network.

5. Description of the proposed method
For illustration the proposed method, we will calesithe two points fuzzy boundary
value problems:

y ) =f(x,yx), y(®), x€[ab] 17)
with the fuzzy boundary conditions:
y(a) = Aandy(b) =B, whereA andB are fuzzy numbers iR' with r-level sets :
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Al; =[A/A] and[B], =[B,B].
The fuzzy trial solution for this problem is :
X

b- -
[y GOl =2 [Ale+ - [B]y+(x — @) (x = b) [N, (18)
This fuzzy trial solution by intention satisfieetfuzzy boundary conditions in (17).

The error function that must be minimized for peob(17) is in the form :

E= Z’lg 1(EL + EU (19)
where

Bl = [[22582" ~ [r (1, (e, 2220)] ] )
B = [[2299) [¢ (s, 12 G0, dyt("‘))]r] (21)

where{xi};g=1 are discrete points belonging to the interjeab] (training sel and in the
cost function(19), EX andE!Y can be viewed as the squared errors for the |diméts
and the upper limits of the r — level sets, retpely.

Now, to drive the minimized error function for pfem(17) :

From (18) we can find :

[y:COlF = — [Alk+ = [B]H( x? = (a+b)x + ab)[N()]r (22)
[y 1Y = ;‘ [A1%+ 222 [B]V+(x? — (a + b)x + ab)[N()]V (23)
Then we get :
WeblE — L faJL + Bk +(x? — (a + b)x + ab) Ny (24 a — BYNGOIE.
(24)
A — L [A]Y + - [BY +(x — (a+ b)x + ab) LM oxa — ) NGOY.
(25)
Therefore, we have :
ddy;f‘)] = (x2 - (a+b)x +ab) TN 15 (0% —a—b) MOUE 4 NIt (26)
dg;f‘)] (x2 — (a + b)x + ab) LNWIT [N(X) L 2(2x—a—b) dNWIF N(X) L+ NKY (27)
Then (20) and (21) can be rewrltten as:
EL —
[( % —(a+b)x1+ab)M+2(2xl b)d[%j”]f#
2[NGx)IE - f(x;, =2 [ATF + 22 [B]E +
(52— (a+ by, + ab) NG} o (Al [BIE+(x% — (a + b)x; +
ab) WM (5 — o — b) NG, 12 (28)
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EU =

U
[(x;* — (a + b)x; + ab) M +202x—a—b) :JI[N(;?)]r +

2INGDIY - £Cxi, T2 [AIY + S22 [B)Y + (%2 — (a + b)x; +
ab)[N(x)]Y - [A]%+— [BIY+(x2 — (a+ b)x; +ab) LMo 5
b)[N(xDIY) 12 (29)
where
[INxDIF =
Zjnilmi“{["j]? S(Xi[Wj]: + [bj]:)r["j]is(xi[wj]f + [bj]f) r[Vj]IrJS(Xi[Wj]: +
[bi]) vl s (xilw], + [bi])3 (30)
[INxDIF =
Zjﬁmax{["j]?s(xi[wj]? + [bj]?) '[VJ']?S(Xi[Wj]IrJ + [b,-]f) :[Vj]fs(xi[wj]? +
i1, [l s (xifwy], + [b-]U) (31)
d[N(xl)

=y, min { [v], [wi] 5" (xi[w], + [b] ) Wl Twl, s (xalwi], +

[b'] ) [Vj] [Wj] s (Xi[Wj] + [by] ) [Vj] [Wj] s (Xi[Wj]iJ + [b]-]f)} 32)
AL =y, max ] fwilys” (bl + i) ol Tl s Gl +
[bi]r)'["i]r[wj]rs (Xi[wj]r + [bi]r)'["j]r[wi]rs (Xi[Wj]iJ + [b]-]f)} (33)
012[21_)((?)]1; = Xj2, min{ [Vj]:([Wj]?)ZS” (Xi[Wj]?Jr[bj]?)' [Vj]:([Wj]I:)Z s” (Xi[WjKJ +
[])). [l wily2s” (sl ]+ Do) fw] ] 02 (b)) + [oi])) 3 34
NGV

oz = Xjo1 max{ [V]] ([WJ] )2’ (Xi[Wj]?Jf[bj]:)'[Vj]?([wj]f)z S"(Xi[Wj]IrJ +
[b,-]r),[vj]r([w,-]r)zs (Xi[Wj]rJr[bj]r)'[Vj]f([wj]lrj)ZS" (Xi[WjKJ + [bj]lrj)} (35)

wheres” and s” are the first and second derivative of the hypéhtangent function.
Then we substitutg28) and (29) in (19) to find the error function that must be
minimized for problem (17).

6. Numerical example

In this section, we will solve two problems aboutotpoint fuzzy boundary value
problem. We have usétx 10 x Jfully fuzzy feed forward neural network. The
activation function of each hidden unit is the lygmdic tangent activation function. The
analytical solutiongy, (x)]% and[y,(x)]Y has been known in advance. Therefore, we test
the accuracy of the obtained solutions by computiegdeviation :

e(x, 1) =|lya®IY — [y 17, e(x N={[yaCOlr — [y: Olr|
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To minimize the error function we have used BFG&siNewton method (For more
details, see [16]). The computer programs whicthexe used in this work are coded in
MATLAB 2015.

Example 1. Consider the linear fuzzy boundary value proble
y’(x) —y'(x) =1. with x€ [0, 0.5]

y(@ =[2+r, 4—r1],

y(0.5)=[5+r, 7 —r], where re [0, 1].

The analytical solutions for this problem are :

[FaGOIF =(2 41— =) + (oo )e”

aGOIW= (41— 5—=) + (oo )e*

The trial solutions for this problem are :

[yeGOlr= (1 —2x)(2 + 1) +2x(4 —1)+(x* — 0.5x)[N®)]r

[y GOIY=(1 = 2x) G +1) + 2x(7—1)+ (x* = 0.5x)[N®)I

The fully fuzzy feed forward neural network has megained by using a grid of ten
equidistant points in [@.5].

Numerical solutions for this problem can be foumdaible (1).

The error function that must be minimized for thieblem will be :

i2:(Eir + Eip (36)
where
El={(xi2 — 0.5x) TR 4 (45 — 1) WO i)t -
(x;2 — 0.5%;) JNCDE ‘”N("l) — (2% — 0.5)[N(x)]% + 4r — 5 ]2 (37)
EV=[(x;? —05x1) N(Xl) + (4x; — 1) INGDI ‘”N(Xl) + 2[NxD]Y —
(x;2 — 0.5x;) ANCDIr ‘”N(Xl) — (2% — 0.5)[N(xi)]r +4r— 572 (38)

Then we use (36) to update the weights and biases.

Example 2. Consider the non-linear fuzzy boundary value bl

y’ (%) =- (y'(x))z, with x€ [0, 2]
y(0) =[r,2—r],y(2) =[1+r,3—r] and re [0, 1].
The analytical solutions for this problem are:

yaGlk=n (x + ) + 1 —In =

yaeW=In(x + Z) +2—r—In =
The trial solutions for this problem are:

2—Xx

Beolk = 12X + (1 +0)% +x (x - DNk
BelV= @-0ZX+ @ -nE+xx-DINGIY
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The fully fuzzy feed forward neural network has megained by using a grid of ten
equidistant points in [@].

Numerical solution for this problem can be foundahle (2).

The error function that must be minimized for thisblem will be :

= 211=11(E1Lr + Eillj" (39)
where
[N(xi d[N(xj r]" dIN(x; Ir"
Ei]-f‘:[(xl le)# + (4 )% + Z[N(Xl)]{:‘ + ((Xiz _ in) [ ;’; )] +
(2x;— 2 )[N(x,)] +0.5)%2 ]2 (40)
[N(x; d[NE)IY d[N(x)]Y
EL=[(x2 — 2x;) LINGI? (x) + (4x; )% + 2[ING)]Y + ((x2 — 2x;) &L C(;;)] +
(2% — 2)[Nxp]Y + 0.5)2 12 41

Then we use (39) to update the weights and biases.
For the above two problems we have

INx)]r = Z]_ljlmin{["i]:s(xi[wi]: + [bj]:)' [Vi],fs(xi[""j]iJ

+ [bj]f)'["j]lrjs(xi[wj]? + [bj]?):["j]lrjS(Xi[""j]lrJ + [bj]f)}
NGtk = ) mact s (s, + [B)). [, s (alm])

+ [b']U) [Vj]US(Xi[Wj]L + [b']L) [Vj]US(Xi[Wj]U [b']U)

AN = 3 min (ol (sl + o). bl Tl s sl
+ [b,-]r),[v,-]r[wj]rs (Xi[Wj]r + [bj]r)'["j]r[wj]rs (Xi[Wj]r
+ [b]')3
AL 7™ Lol (ol + 1) ol (sl
+ [bi]r)r[Vj]r[Wj]rS ( i[Wj]r + [b,-]r),[v,-]r[w,-]rs (Xi[Wj]r
+ [b,-]f)}
d?[N(x)]¥

= o mint ] Q]2 (a ol 4o, Bl ol )2 5 (o]}
+ [])) Wl dwil%s” (slwil + o], ) [, (wi])2s” (]
+ [bi]f) }
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d?[N(x)]Y 10 ., .
TE =3 mas( ol s (a4 0i2), bl ol )2 o]}

+ [ol)) Wl dwil»?s” (slwil + 0050 ) [l (ws])2s” (]
+ [bj]lrj) }

7. Conclusion
In this work, we have introduced a modified methodindthe numerical solution of the
two- point fuzzy boundary value problems for thdioary differential equations. This
method based on the fully fuzzy neural networkgpraximate the solution of the second
order fuzzy differential equations. For future $&sd one can extend this method to find
a numerical solution of the fuzzy partial diffeti@hequation.

Table 1. Numerical result for example (1), x=1.

r [y GOl e(x,r) [y GOIY e(x, 1)
0 9.94616414 3.29137-7 11.9461642 4.33916-7
0.1 | 10.04616401 1.96846e-7 11.84616411 2.93475e-7
0.2 | 10.14616481 9.95565e-7 11.74616478 9.70548e-7
0.3 | 10.24616458 7.63284e-7 11.64616385 3.95104e-8
0.4 | 10.34616447 6.60993e-7 11.54616387 5.67802e-8
0.5 | 10.44616422 4.09513e-7 11.44616389 7.56011e-8
0.6 | 10.54616396 1.47232e-7 11.34616391 9.53493e-8
0.7 | 10.64616391 9.75941e-8 11.24616382 1.15291e-8
0.8 | 10.74616385 3.39072e-8 11.14616384 2.63433e-8
0.9 | 10.84616389 7.52383e-8 11.04616386 5.26859¢e-8
1 10.94616389 7.39070e-8 10.94616386 4.56782e-8

Table 2: Numerical result for example (2), x=1.

r [y GOl e(x 1) [y GOIY e(x, 1)
0 0.62011450 3.2473€-10 2.62011450 8.4663«-10
0.1 | 0.720114507 4.66221-10 2.520114507 9.79602e-10
0.2 | 0.820114507 2.03208e-10 2.420114507 6.85555e-10
0.3 | 0.920114507 3.80684e-10 2.320114513 6.62032e-9
0.4 | 1.020114507 4.09557e-10 2.220114514 7.59010e-9
0.5 | 1.120114507 3.50405e-10 2.120114508 1.74006e-9
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0.€ | 1.22011450 4.5900¢-1C 2.02011450 9.0081°e-1C
0.7 | 1.320114516 9.46681e-9 1.920114507 9.21604e-10
0.8 | 1.420114512 5.06564e-9 1.820114507 4.99811e-10
0.9 | 1.520114507 8.21899e-10 1.720114514 7.15955e-9
1 1.620114514 7.88763e-9 1.620114508 1.02988e-9
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