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Abstract. In this paper, we study completions for weakly sign symmetric +
0p -matrices, 

sign symmetric +
0p -matrices and nonnegative +0p -matrices. We obtained that digraphs 

that include all loops and have weakly sign symmetric +
0p -completion, sign symmetric 

+
0p -completion and nonnegative +0p -completion are complete digraphs.  
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1. Introduction 
In this section we define terms and give a brief literature on related work. 
 
Definition 1.1.  A P -matrix ( 0P -matrix) is a matrix in which every principal minor of 

the matrix A  is positive (nonnegative) [1].   
 

Definition 1.2.  A nn ×  matrix is a +
0P -matrix if for each { }nk ,...,1∈ , every kk ×  

principal minor is nonnegative and at least one kk × principal minor is positive [2].   
 

Clearly, P -matrix is both 0P -matrix and +
0P -matrix. Also observe that +

0P -matrix is a 

0P -matrix. 

Definitions 1.1 and 1.2 considers the values of the principal minors, the next definition 
gives restrictions on the type of entries of a matrix. 
 
Definition 1.3.  A nn ×  matrix [ ]ijaA =  is  

i. Weakly sign symmetric(wss) if 0≥jiij aa  for all i and j  

ii. Sign symmetric(ss) if 0>jiij aa or 0== jiij aa  for all i and j  
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iii.  Nonnegative if 0≥ija  for all i and j  

iv. Positive if 0>ija  for all i and j  

 

Using Definition 1.3, we have four different subclasses of +
0P -matrix (given in 

Definition 1.2). 
 

Definition 1.4.  A +
0P -matrix A is called a weakly sign symmetric +

0P -matrix (resp. 

sign symmetric +
0P -matrix) if 0≥jiij aa   (resp. either 0>jiij aa or jiij aa == 0 ) for 

all i and j . Similarly, A +
0P -matrix A is called a positive +

0P  -matrix (resp. 

nonnegative +
0P -matrix) if 0>jiij aa   (resp. 0≥jiij aa ) for all i and j . 

 
 

Example 1.5. The matrix 

















−
−

=
220

143

226

A is a +
0P -matrix since all principal minors 

are nonnegative and in every order there is at least one positive principal minor. Looking 

at the entries, it is clear that matrixA is a weakly sign symmetric +
0P -matrix. It fails to be 

sign symmetric +
0P -matrix because 02 3113 =≠= aa , again it is not a nonnegative +0P  -

matrix since both 212 −=a  and 321 −=a are negatives and by the same fact it is not a 

positive +
0P -matrix. 

 

Definition 1.6.  A +
1,0P  -matrix is a +

0P -matrix whose diagonal entries positive and a 

positive +
1,0P  -matrix is a +

1,0P  -matrix in which all entries are positive.   

 
Proposition 1.7.  A matrix is a positive +

1,0P  -matrix if and only if it is positive +
0P -

matrix 

Proof: Positive +
1,0P  -matrix is a +

1,0P  -matrix in which all entries are positive (from 

Definition 1.6), it means the condition that all diagonal entries are positive and hence it is 

a positive +
0P -matrix. 

       Conversely, a positive+
0P -matrix is a +

0P -matrix in which all entries are positive 

hence all diagonal entries are positive, therefore it correct to say it is  a positive +1,0P  -

matrix (although diagonal entries have been repeatedly been mentioned to be positive).  
 
Definition 1.8.  A partial matrix is a matrix in which some entries are specified while 
others are free to be chosen. Let ∏  be a class of matrices (e.g. weakly sign 



On Completion Problems for Various Subclasses of −+
0P Matrices 

209 
 

 

symmetric +
0P -, sign symmetric +

0P -, nonnegative +
0P - and positive +

0P -matrices) then a 

partial ∏ -matrix is one whose specified entries satisfy the required properties of a ∏ -
matrix.  
 Graph theoretic approach will be used in completing these partial matrices, and 
some definitions are given as follows. 
 
Definition 1.9.   A digraph ( )DD EVD ,=  is a graph G  with ordered pairs ( )vu,   of 
vertices and arc where u the initial vertex is and v  is the terminal vertex. The order of a 
digraph D  denoted n  is the number of vertices ofD . A digraph is complete digraph if 
it includes all possible arcs between its vertices  (also called clique) [3].    
 
A nn ×  partial matrix A  is said to specify a digraph D  on vertices { }nvv ,...,1  if 

( )ji vv ,  is an arc in D  if and only if the entry ija  of A is specified. 

 
Definition 1.10.  A completion of a partial matrix is a specific choice of values for the 
unspecified entries. If we consider classes given in Definition 2.8, a digraph D  has ∏ -
completion if any partial ∏ -matrix specifying D  can be completed to a ∏ -matrix. 
 
 On the related work, we just give a brief history of matrix completions close to 
our research class. Research on P -matrix completion was first studied by Johnson and 
Kroschel in [4] and later extended by DeAlba and Hogben in [5]. In 2003, a subclass of 
P -matrices: weakly sign symmetric P -matrices was studied in [6] and then in two 
subclasses: positive and nonnegative P -matrices were considered in [7]. Another class 
on 0P -matrices was investigated first by Choi and others in [1], and its subclasses, 

weakly sign symmetric 0P -matrices, nonnegative symmetric0P -matrices and sign 

symmetric 0P -matrices were consider in the following papers [6], [8] and [9] respectively. 

In 2015, a new class of +0P -matrices was first introduced and classification of digraphs 

of up to order 4 having +
0P -completion was done. It is in this class that we are interested 

in, and the subclasses to be discussed are weakly sign symmetric +
0P -matrices, sign 

symmetric +
0P -matrices and nonnegative +0P -matrices.  

 
2. Preliminaries 
In this section, we will present some basic results that will be useful in the next section. 

If a partial wss +
0P -matrices, ss +

0P -matrices and nonnegative +0P -matrices omits all 

diagonal entries then it can be completed to wss+
0P -matrices, ss +

0P -matrices and 

nonnegative +
0P -matrices by assigning sufficiently large values to unspecified diagonal 

entries. In this research we are interested in the situations where all diagonal entries are 
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specified. Zeros along diagonal entries tend to make completion for the three subclasses 
difficult.  

Consider 







=

02

1x
A which is a partial wss +

0P -matrix, partial ss +
0P -matrix and a partial 

nonnegative +
0P -matrix specifying digraph in Fig. 2.1 and cannot be completed to a 

wss +
0P -matrix, a ss +

0P -matrix and a nonnegative +
0P -matrix respectively since 

02det <−=A for any value ofx . Thus the digraph in Figure 2.1 does not have wss+
0P -

completion, ss +
0P - completion and nonnegative +0P - completion  

 

 
 

Figure 2.1: 
 
Now, in the next section we assume that all digraphs have diagonal entries specified.  
 
3. Main results 
Our main results on completions of various subclasses of +

0P - matrices namely weakly 

sign symmetric +
0P - matrices, sign symmetric +

0P -matrices and nonnegative+
0P -

completion are presented in Theorem 3.1, 3.2 and 3.3 respectively. 
 

Theorem 3.1. The digraphs having all loops and weakly sign symmetric +
0P -completion 

are complete digraph. 

Proof: Let wss nn×  +
0P -matrix cA  be a completion of partial wss nn×  +

0P -matrix 

A having all diagonal entries specified. Assume that the partial wss nn×  +
0P -matrix A  

has the first 1−n diagonal entries as 0 and the last is 1 with specified entries saij '  and 

unspecified entries sxij '  . Consider the 22× principal minors ( )jiA ,det for 

some { }nji ,...,1, ∈ . Note that 0=jidd always. Now split into three cases: 

Case 1: Position ij  and ji are specified. In this case we have 

( ) 0,det ≥−=−= jiijjiijji aaaaddjiA   

Thus 0≤jiijaa and by wss +
0P -completion ( 0≥jiijaa  ) we have 0=jiij aa  

Case 2: Position ij  is specified and ji is unspecified. In this case we have 

( ) 0,det ≥−=−= jiijjiijji xaxaddjiA  
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Thus 0≤jiij xa and by wss +
0P -completion we have 0=jiij xa  

Case 3: Position ij  and ji are unspecified. In this case we have 

( ) 0,det ≥−=−= jiijjiijji xxxxddjiA  

Thus 0≤jiij xx and by wss +
0P -completion we have 0=jiij xx  

Observe that in all cases the product of twin entries is zero. However wss +0P -

completion requires that at least one of 22× principal minors is positive. This is a 
contradiction.  
 
Theorem 3.2. The digraphs having all loops and sign symmetric+

0P -completion are 

complete digraphs. 
Proof: Using same hypothesis as in Theorem 3.1, again consider the 22× principal 
minor ( )jiA ,det for some { }nji ,...,1, ∈  and that 0=jidd always. This means if a non-

diagonal entry is specified then it must be zero (0) that is 0=ija  since  

( ) 0,det <−=−= jiijjiijji axxaddjiA  if 0≠ija . Therefore all unspecified non-

diagonal twin entries jix  are also assigned zero (0) that is 0=jic . As a result all non-

diagonal entries have zeros hence ( ) 0det =αA  { }n,...,1∈∀α  this shows that partial 

ss +
0P -matrices with unspecified entries lack sign symmetric +

0P -completion and so, the 

only digraphs having all loops and sign symmetric+
0P -completion are complete digraphs. 

 

Theorem 3.3. The digraphs having all loops and nonnegative +
0P -completion are 

complete digraph. 
Proof: The proof for this theorem follows from the proof of Theorem 3.1, also having 
three cases with all specified entries ija s being nonnegative i.e. 0≥ija   and values 

assigned to unspecified entries ijx s being nonnegative that is 0≥ijc  , which also shows 

that all the three cases have the product of the twin entries being zero and similar to 
Theorem 3.1 does not have 22×  principal sub-matrix with positive determinant hence 

digraphs having all loops and nonnegative +
0P -completion are complete digraph. 

 
4. Conclusion and recommendations 
Based on the main results we have concluded that digraphs that include all loops and 

have weakly sign symmetric +
0P -completion, sign symmetric +

0P -completion and 

nonnegative +
0P -completion are complete digraphs. According to sections on related 



Victor Tomno 

212 
 

 

work and main results, we observe that similar research should be done for positive +0P -

matrices.  
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