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Abstract. In this paper we consider a two heterogeneoussdharkovian queue with
partial breakdown. If both the servers are idda, arriving customer select the fastest
server for service. During busy period the systeay freakdown, immediately repair
has been carried out. But, during the breakdowiog@ehe server work in a slower rate.
This model has been solved using Matrix geometriethod. Some performance
measures and numerical results are obtained.
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1. Introduction

Queueing system with breakdown / partial breakdbas applications in manufacturing
system, production system, telecommunication ndtwaord computer system. Single
sever queueing systems with server breakdown hega btudied by many researchers
including Federgruen and Green [4], Li et al. [TRang [24], Nakdimon and Yechiali
[17], Wang et al. [28], Wang et al. [27], Choudhamd Tadj [2], to mention a few.
Multi-server queueing systems with server breakdoame more flexible and applicable
in practice than the single server counterpart. &l@g, due to their analytical
complexity, there have been only a few studiesi@@drout on multi-server queueing
systems with server breakdown. The equilibrium sial for the general input and
exponential service time and witlservers was given in Kendall [7]. A non-construetiv
existence theorem for the stationary distributiéra@eneral input and general service
time was presented in Kiefer and Wolfowitz [8]. Kmrand Mc Gregor [6] obtained the
busy period distribution for th /M /Squeue. Krishnamoorthi [9] considered a Poisson
gueue with two heterogeneous severs and with ieolabf the First-in-First-out
principle. Mitrany and Avi-ltzhak [16], studied /M /N queue with server breakdown
and ample repair capacity. In their study, the mungenerating function of the queue
size has been obtained by using the transformatiethod.
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Heffer [5] has analyzed waiting time distributiof M/E; /Squeue. Sing [22]
studied arM /M /2 queueing system with balking and heterogeneowsiserin 1970, the
author obtained the stationary queue length digioh and the mean queue length and
also compared the model with heterogeneous searetdhe model with homogeneous
servers. Singh [23] discussed a Markovian queuk thié¢ number of servers depending
upon the queue length. Desmit [3] presented anoapprto identify the distribution of
waiting times and queue lengths for the qudyé,/S. He reduced the problem to the
solution of the Wiener-Hopf-type equations and theed a factorization method to solve
the system. Lin and Kumar [13] has analyzed thér@btcontrol of a queuing system
with two heterogeneous servers. Rubinovitch [2ddlistd the problem of a heterogeneous
two channels queuing systems. In his first papedibeussed three simple models and
gave the condition when to discard the slower sedlepending on the expected number
of customers in the system. In the second papestiiied a queuing model with a
stalling concept.

Vinod [25], considered the model of Mitrany and Atzhak [16] using the
matrix-geometric solution method. F8r= 1, the author imposed some restrictions on
the server down-periods (either independent ofgteue length or only occurring when
the sever is active). Neuts and Lucantoni [20] ®altenhosrt [30] studied the repair
model by considering limited repair capacity. Neatsl Lucantoni [20], considered a
single queue of customers, each served by one pdirislllel servers. Wang and Chang
[27] studied ariM /M /R /N queue with balking, reneging and server breakddvams the
viewpoint of queueing. They solved the steady-gpatdability equations iteratively and
derived the steady-state probabilities in matrixrfo

In 1999, Abou-El-ata and Shawky [1] introduced mper approach to find the
condition when to discard the slower server in tettegeneous two channels queue.
Kumar and Madheswari [10], studied MM /2 queueing system with heterogeneous
servers and multiple vacations by using the magesmetric solution method. They
studied the stationary queue length distributiod amiting time distribution along with
their means via the rate matrix. Yue et al. [3iiftHer considered the model in 2005.
They obtained the explicit expression of the ratatrim and proved the conditional
stochastic decomposition results for the statiomague length and waiting time. Madan
et al. [15], studied a two-server queue with Belin@echedules and a single vacation
policy where the two servers provide heterogeneexpgonential services to the
customers. They obtained steady-state probab#ibherating functions of the system size
for various states of the servers. Rani and Shafgh] studied M/M/2/K with
controllable arrival rate.

In this paper we consider a two heterogeneous sdéhaekovian queue with
partial breakdown. If both the servers are idddd, drriving customer selects the fastest
server. During busy period the system may breakdammediately repair has been
carried out. But, during the breakdown period thevars work in a slower rate. The
model has been defined in section 2 and the madebken analyzed in section 3. Some
performance measures are given in section 4, aneahstudy has been carried out in
section 5. A conclusion has been given in thedastion.
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2. The model
We consider aM /M /2 queueing model with heterogeneous servers, séraed server
2. The inter arrival time of customers follows niga exponential distribution with

mean % Server 1 and 2, served the customers based omexial distribution with rates

wandp, respectively(p, < u;) and lety = py; + p,. Each customer is served only by
one server and the queue discipline is first comrs $erved. If the system is empty
arriving customer always joins the first server.ridg service, the system may
breakdown, the breakdown period follows negativeoeential distribution with rate.
Immediately the repairing process starts, the repaiiod follows negative exponential
distribution with ratef. During the breakdown period, the servers servesctistomers
with lower ratesus, p, respectively and let’ = puz + py (U > Hp > H3 > He). This
behavior of the system is called as system wittigddoreakdown, if an arriving customer
finds both the servers busy the customer waitswaiéing line of a infinite capacity for
the first free server.

3. Theanalysis
At time t, let L(t) be the number of customershie system and J(t) the server state.
J(t) = {O, if the server is in partial breakdown
1, if the server is in busy state
LetX(t) = (L(t),J (1)), then{(X(t)): t = 0} is a Continuous time Markov chain
(CTMC) with state space= {(i,j):i = 0,1;j = 0}, where j denotes the number of
customer in the system ahdenotes the server state.
- Gy G -
BO Bl AO
Ay Ay Ao
Q= Az Ay Ay

wheré the sub—matriceﬂa;, A1 and A, are of order 2 x 2 and are appearing as

A0
Ao = [o ,1]
A _[—(/1+u’+/3) 0
= 0 -1+
_[w 0
42 = [0 u]
and the boundary matrix is defined by
Co = )
;=0 A
0
B, =
0 [UJ
PR B
1 a —(A+a+p)

Let P = (py, p1, 02, ---) be the stationary probability vector associateth v@,
such that PQ=0 and Pe=1, where e is a column vettds of appropriate dimension,

wherepy = (po), bi = (Pio,0i1) fori = 1.
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If the steady state condition is satisfied, the wettorsp; satisfies following equations:

PoCo +p1Bo =0 (1)
PoCy + 1By + P24, =0, (2
PiAo + Piy141 + Piv24, = 0,0 21 3)
pi=pR"Yi=2 (4)

where R is the rate matrix, is the minimal non-niegasolution of the matrix quadratic
equation (see Neuts [19]).

R2A2 + RA]_ + AO = 0 (5)
Substituting the equation (4) in (2), we have
PoCi +p1(B1 +RA;) =0 (6)
and the normalizing condition is
Po+pi(I—R)le=1 ) (7
Theorem 1. The queueing system described in this articleablstif and only ifp<1,
wherep = M

ap’+pu

Proof: Consider the infinitesimal generatoe= [_aﬁ _ﬂa], which is a square matrix of

order 2, the row vectar = (m,, m;)satisfying the conditiomA=0 andme=1.
That is,

. - Mg+B)
The system is stable if and onl <1

ap'+pp

Theorem 2. If p<1, the matrix equation (5) has the minimal nonatieg solution
R = _AoAIl - RZAzAIl

Proof: We define the matrig = A, + 4; + A,. This matrix A is a 2 x 2 matrix and it
can be written as A _aﬁ _ﬁa]
A is reducible. The analysis present in Neuts [i$8hot applicable. In Lucantoni [14],
similar reducible matrix is treated for the casewlhe elements are probabilities.
Equation (5), can be written as,

AoAT + RALATY + R2A,ATY = 0471

SinceA;is non-singularA7?® exists and

R = —AyATt — RZA,ATT (8)
where
A1 = 1 [—(/1 +B8+w —B

VA4 B+wW@+ B+ ) —apl —a —(A+B+u)

Using Neuts and Lucantoni [20], the matrix R is mwitally computed by using the
recurrence relation with R(0)=0 in equation (8).

Theorem 3. If p<1, the stationary probability vectayg andp; = (p;o, pi1) are
1

Po” [1 + ( A )((1 —n + 1) (Wre + @) yl-ndt 7”10)]
(1-7)(1—11) — 10701 @A+ B+ ) ™
A(p'ryo + @)

Pro = [I»h()L + B — W) Po
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()
P11 m P?
andp; = p,R"%;i>2
Proof: pg, p1o @andp,; follows from the equations (1), (2) and (7).

Remark 1. Even though R in Theorem 2 has a nice structuiehvdnables us to make

L & 1y Nl it
use of the properties |l = 8 o1 &y=0 01 , forn > 1due to the form of
r

1y & 191, it May not be easy to cary out the computatiauired to calculate theg;, and
the performance measures. Hence, we explore thablitg of algorithmic computation
of R. The computation of R can be carried out usingumber of well-known methods.
We use Theorem 1 of Latouche and Neuts [11]. Theeixra is computed by successive
substitutions in the recurrence relation:

R(0) =0 (9)
R(n+1) = —AoAT — [R(n)]?A4,A7  forn = 0 (10)
and is the limit of the monotonically increasingsence of matricek (n),n = 0}.

4. Perfor mance measur es
Using straightforward calculations the following rigemance measures have been
obtained:

() probability of down time =p,

(ii) probability that both the servers be busy = py — (P19 + P11)

(iii) Expected number of customers in the sysl&iM) = Y., hp, €

(iv) Expected number of customer send@!) = pypie + (U + W) Xp—2Pn €

(v) Expected waiting time of a customer in the systaotording to Little's law, is

Ew) =22

5. Numerical study

In this section, some examples are given to sha@neffect of the parameteksy,, ,,
Us, Wy, . andp on the probability of down time, probability tHatth the servers be busy,
Expected number of customers in the system, Exgecteanber of customer served,
Expected waiting time of a customer in the systenttie model analyzed in this paper.
The corresponding results are presented as caseél) (2).

Case (1): If A=0.3,u; = 4.5, u, = 3.2, u3 = 2.5, yuy = 1.2, 0=0.2 andp=0.5, the matrix
R is obtained using the equations (9) & (10)
R= [0.071038 0.004826]

0.001859 0.038068 _
and the invariant probability vector is

P = (py, p1,p2, --) Where

po = (0.911280)

p1 = (0.023421,0.060812)

and the remaining vectopgs are evaluated using the relatign= p;R""%;i > 2
p, = (0.001776830526,0.002428021049)

ps = (0.000130736167,0.000101004887)
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ps == (0.000009475004, 0.000004475987)
ps = (0.000000681406,0.000000216118)
ps = (0.000000048807,0.000000011516)
p7 = (0.000000003489,0.000000000674)
ps = (0.000000000249,0.000000000042)
Po = (0.000000000018,0.000000000003)
For the chosen parametgxs— 0, and the sum of the steady state probabilities is
found to be 0.999964.
The performance measures are
(i) probability of down timep, = 0.911280
(i) probability that both the servers be busy =0.004451
(iif) Expected number of customers in the system E(N332985
(iv) Expected number of customer served E(M)=0.4133212
(v) Expected waiting time of a customer in the systaotording to Little's law, is
E(W)=0.311328

Case (2): If A=0.5,u; = 5.2, u, = 4.6, 3 = 3.3, g = 2.2, 0=0.3 andp=0.6, the matrix
R is obtained using the equations (9) & (10)
R = 0.081549 0.005253]
0.002531 0.049600
and the invariant probability vector is
P = (po, p1,p2, -.) Where
po = (0.867201)
p1 = (0.040272,0.083577)
and the remaining vectopgs are evaluated using the relatign= p; R""%;i > 2
p> = (0.003495675046,0.004356968217)
p3 = (0.000296096317,0.000234468418)
ps = (0.000024739800,0.000013185027)
ps = (0.000002050877,0.000000783936)
pe = (0.000000169231,0.000000049656)
p; = (0.000000013926,0.000000003352)
pg = (0.000000001144,0.000000000239)
Po = (0.000000000094, 0.000000000018)
P10 = (0.000000000008,0.000000000001)
For the chosen parametexg — 0, and the sum of the steady state probabilitiéstiad
to be 0.999474.
The performance measures are
(i) probability that down tim@,= 0.867201
(i) probability that both the servers be busy =0.008424
(iii) Expected number of customers in the system E(NXH®R12
(iv) Expected number of customer served E(M)=0.72657
(v) Expected waiting time of a customer in the systaatording to Little's law, is
E(W)=0.282624
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6. Conclusion

In this article, a heterogeneous tow-server queusystem with partial breakdown has
been studied. The model studied in this articlen@e realistic for modeling queueing
situations where the server may experienced mapgstpf breakdowns which can be
realized in manufacturing production systems. Tystesn can be generalized by taking
C = 3 customers.
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